skip to main content

Title: Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds
Abstract Background

Improving the prediction ability of a human-machine interface (HMI) is critical to accomplish a bio-inspired or model-based control strategy for rehabilitation interventions, which are of increased interest to assist limb function post neurological injuries. A fundamental role of the HMI is to accurately predict human intent by mapping signals from a mechanical sensor or surface electromyography (sEMG) sensor. These sensors are limited to measuring the resulting limb force or movement or the neural signal evoking the force. As the intermediate mapping in the HMI also depends on muscle contractility, a motivation exists to include architectural features of the muscle as surrogates of dynamic muscle movement, thus further improving the HMI’s prediction accuracy.


The purpose of this study is to investigate a non-invasive sEMG and ultrasound (US) imaging-driven Hill-type neuromuscular model (HNM) for net ankle joint plantarflexion moment prediction. We hypothesize that the fusion of signals from sEMG and US imaging results in a more accurate net plantarflexion moment prediction than sole sEMG or US imaging.


Ten young non-disabled participants walked on a treadmill at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. The proposed HNM consists of two muscle-tendon units. The muscle activation for each unit was calculated more » as a weighted summation of the normalized sEMG signal and normalized muscle thickness signal from US imaging. The HNM calibration was performed under both single-speed mode and inter-speed mode, and then the calibrated HNM was validated across all walking speeds.


On average, the normalized moment prediction root mean square error was reduced by 14.58 % ($$p=0.012$$p=0.012) and 36.79 % ($$p<0.001$$p<0.001) with the proposed HNM when compared to sEMG-driven and US imaging-driven HNMs, respectively. Also, the calibrated models with data from the inter-speed mode were more robust than those from single-speed modes for the moment prediction.


The proposed sEMG-US imaging-driven HNM can significantly improve the net plantarflexion moment prediction accuracy across multiple walking speeds. The findings imply that the proposed HNM can be potentially used in bio-inspired control strategies for rehabilitative devices due to its superior prediction.

« less
; ; ;
Publication Date:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Protein–protein interaction (PPI) is vital for life processes, disease treatment, and drug discovery. The computational prediction of PPI is relatively inexpensive and efficient when compared to traditional wet-lab experiments. Given a new protein, one may wish to find whether the protein has any PPI relationship with other existing proteins. Current computational PPI prediction methods usually compare the new protein to existing proteins one by one in a pairwise manner. This is time consuming.


    In this work, we propose a more efficient model, called deep hash learning protein-and-protein interaction (DHL-PPI), to predict all-against-all PPI relationships in a database of proteins. First, DHL-PPI encodes a protein sequence into a binary hash code based on deep features extracted from the protein sequences using deep learning techniques. This encoding scheme enables us to turn the PPI discrimination problem into a much simpler searching problem. The binary hash code for a protein sequence can be regarded as a number. Thus, in the pre-screening stage of DHL-PPI, the string matching problem of comparing a protein sequence against a database withMproteins can be transformed into a much more simpler problem: to find a number inside a sorted array of lengthM. This pre-screening process narrows down themore »search to a much smaller set of candidate proteins for further confirmation. As a final step, DHL-PPI uses the Hamming distance to verify the final PPI relationship.


    The experimental results confirmed that DHL-PPI is feasible and effective. Using a dataset with strictly negative PPI examples of four species, DHL-PPI is shown to be superior or competitive when compared to the other state-of-the-art methods in terms of precision, recall or F1 score. Furthermore, in the prediction stage, the proposed DHL-PPI reduced the time complexity from$$O(M^2)$$O(M2)to$$O(M\log M)$$O(MlogM)for performing an all-against-all PPI prediction for a database withMproteins. With the proposed approach, a protein database can be preprocessed and stored for later search using the proposed encoding scheme. This can provide a more efficient way to cope with the rapidly increasing volume of protein datasets.

    « less
  2. Abstract

    Recent spectacular advances by AI programs in 3D structure predictions from protein sequences have revolutionized the field in terms of accuracy and speed. The resulting “folding frenzy” has already produced predicted protein structure databases for the entire human and other organisms’ proteomes. However, rapidly ascertaining a predicted structure’s reliability based on measured properties in solution should be considered. Shape-sensitive hydrodynamic parameters such as the diffusion and sedimentation coefficients ($${D_{t(20,w)}^{0}}$$Dt(20,w)0,$${s_{{\left( {{20},w} \right)}}^{{0}} }$$s20,w0) and the intrinsic viscosity ([η]) can provide a rapid assessment of the overall structure likeliness, and SAXS would yield the structure-related pair-wise distance distribution functionp(r) vs.r. Using the extensively validated UltraScan SOlution MOdeler (US-SOMO) suite, a database was implemented calculating from AlphaFold structures the corresponding$${D_{t(20,w)}^{0}}$$Dt(20,w)0,$${s_{{\left( {{20},w} \right)}}^{{0}} }$$s20,w0, [η],p(r) vs.r, and other parameters. Circular dichroism spectra were computed using the SESCA program. Some of AlphaFold’s drawbacks were mitigated, such as generating whenever possible a protein’s mature form. Others, like the AlphaFold direct applicability to single-chain structures only, the absence of prosthetic groups, or flexibility issues, are discussed. Overall, this implementation of the US-SOMO-AF database should already aid in rapidly evaluating the consistency in solution of a relevant portion of AlphaFold predicted protein structures.

  3. Abstract

    Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy re-quirements, and embedding active control in the devices. Ultrasound stimulation can single-handedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chip-scale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10–20 µm. This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proof-of-concept study to demonstrate that GHz ultrasound can stimulate neuronsin vitro. By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves$$(\ge 0.05\frac{W}{c{m}^{2}})$$(0.05Wcm2)caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chip-scale ultrasound delivery wasmore »discounted as the sole mechanism in stimulation, with effects tested atα = 0.01 statistical significance amongst all intensities and con-trol groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03oCfor$$1.2\frac{W}{c{m}^{2}}\cdot $$1.2Wcm2This paper paves the experimental framework to further explore chip-scale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.

    « less
  4. Abstract

    In this article, we study the hyperbolic Anderson model driven by a space-timecoloredGaussian homogeneous noise with spatial dimension$$d=1,2$$d=1,2. Under mild assumptions, we provide$$L^p$$Lp-estimates of the iterated Malliavin derivative of the solution in terms of the fundamental solution of the wave solution. To achieve this goal, we rely heavily on theWiener chaos expansionof the solution. Our first application arequantitative central limit theoremsfor spatial averages of the solution to the hyperbolic Anderson model, where the rates of convergence are described by the total variation distance. These quantitative results have been elusive so far due to the temporal correlation of the noise blocking us from using the Itô calculus. Anovelingredient to overcome this difficulty is thesecond-order Gaussian Poincaré inequalitycoupled with the application of the aforementioned$$L^p$$Lp-estimates of the first two Malliavin derivatives. Besides, we provide the corresponding functional central limit theorems. As a second application, we establish the absolute continuity of the law for the hyperbolic Anderson model. The$$L^p$$Lp-estimates of Malliavin derivatives are crucial ingredients to verify a local version of Bouleau-Hirsch criterion for absolute continuity. Our approach substantially simplifies the arguments for the one-dimensional case, which has been studied in the recent work by [2].

  5. Abstract

    We provide moment bounds for expressions of the type$$(X^{(1)} \otimes \cdots \otimes X^{(d)})^T A (X^{(1)} \otimes \cdots \otimes X^{(d)})$$(X(1)X(d))TA(X(1)X(d))where$$\otimes $$denotes the Kronecker product and$$X^{(1)}, \ldots , X^{(d)}$$X(1),,X(d)are random vectors with independent, mean 0, variance 1, subgaussian entries. The bounds are tight up to constants depending ondfor the case of Gaussian random vectors. Our proof also provides a decoupling inequality for expressions of this type. Using these bounds, we obtain new, improved concentration inequalities for expressions of the form$$\Vert B (X^{(1)} \otimes \cdots \otimes X^{(d)})\Vert _2$$B(X(1)X(d))2.