Let us fix a prime $\Gamma <p$
It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
 Award ID(s):
 1839077
 Publication Date:
 NSFPAR ID:
 10369381
 Journal Name:
 Mathematische Annalen
 ISSN:
 00255831
 Publisher:
 Springer Science + Business Media
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract p and a homogeneous system ofm linear equations for$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ ${a}_{j,1}{x}_{1}+\cdots +{a}_{j,k}{x}_{k}=0$ with coefficients$$j=1,\dots ,m$$ $j=1,\cdots ,m$ . Suppose that$$a_{j,i}\in \mathbb {F}_p$$ ${a}_{j,i}\in {F}_{p}$ , that$$k\ge 3m$$ $k\ge 3m$ for$$a_{j,1}+\dots +a_{j,k}=0$$ ${a}_{j,1}+\cdots +{a}_{j,k}=0$ and that every$$j=1,\dots ,m$$ $j=1,\cdots ,m$ minor of the$$m\times m$$ $m\times m$ matrix$$m\times k$$ $m\times k$ is nonsingular. Then we prove that for any (large)$$(a_{j,i})_{j,i}$$ ${\left({a}_{j,i}\right)}_{j,i}$n , any subset of size$$A\subseteq \mathbb {F}_p^n$$ $A\subseteq {F}_{p}^{n}$ contains a solution$$A> C\cdot \Gamma ^n$$ $\leftA\right>C\xb7{\Gamma}^{n}$ to the given system of equations such that the vectors$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are all distinct. Here,$$x_1,\dots ,x_k\in A$$ ${x}_{1},\cdots ,{x}_{k}\in A$C and are constants only depending on$$\Gamma $$ $\Gamma $p ,m andk such that . The crucial point here is the condition for the vectors$$\Gamma in the solution$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ to be distinct. If we relax this condition and only demand that$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a nondiagonal tensor in combination with combinatorial and probabilistic arguments.$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ 
Abstract A study of possible superconducting phases of graphene has been constructed in detail. A realistic tight binding model, fit to ab initio calculations, accounts for the Lidecoration of graphene with broken lattice symmetry, and includes
s andd symmetry Bloch character that influences the gap symmetries that can arise. The resulting seven hybridized LiC orbitals that support nine possible bond pairing amplitudes. The gap equation is solved for all possible gap symmetries. One band is weakly dispersive near the Fermi energy along Γ →M where its Bloch wave function has linear combination of and$${d}_{{x}^{2}{y}^{2}}$$ ${d}_{{x}^{2}{y}^{2}}$d _{xy}character, and is responsible for and$${d}_{{x}^{2}{y}^{2}}$$ ${d}_{{x}^{2}{y}^{2}}$d _{xy}pairing with lowest pairing energy in our model. These symmetries almost preserve properties from a two band model of pristine graphene. Another part of this band, alongK → Γ, is nearly degenerate with uppers band that favors extendeds wave pairing which is not found in two band model. Upon electron doping to a critical chemical potentialμ _{1} = 0.22eV the pairing potential decreases, then increases until a second critical valueμ _{2} = 1.3 eV at which a phase transition to a distorteds wave occurs. The distortion ofd  or swave phases are a consequence of decoration which is not appear in two band pristine model. In the pristine graphene these phases convert to usuald wave or extendeds wave pairing. 
Abstract The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy parameterization, is arguably one of the de facto implementations of policy optimization in modern reinforcement learning. For
discounted infinitehorizon tabular Markov decision processes (MDPs), remarkable progress has recently been achieved towards establishing global convergence of softmax PG methods in finding a nearoptimal policy. However, prior results fall short of delineating clear dependencies of convergence rates on salient parameters such as the cardinality of the state space$$\gamma $$ $\gamma $ and the effective horizon$${\mathcal {S}}$$ $S$ , both of which could be excessively large. In this paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG methods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the softmax PG method with stepsize$$\frac{1}{1\gamma }$$ $\frac{1}{1\gamma}$ can take$$\eta $$ $\eta $ to converge, even in the presence of a benign policy initialization and an initial state distribution amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large). This is accomplished by characterizing the algorithmic dynamics over a carefullyconstructed MDP containing only three actions. Our exponential lower bound hints at the necessity of carefully adjusting update rules or enforcing proper regularization inmore »$$\begin{aligned} \frac{1}{\eta } {\mathcal {S}}^{2^{\Omega \big (\frac{1}{1\gamma }\big )}} ~\text {iterations} \end{aligned}$$ $\begin{array}{c}\frac{1}{\eta}{\leftS\right}^{{2}^{\Omega (\frac{1}{1\gamma})}}\phantom{\rule{0ex}{0ex}}\text{iterations}\end{array}$ 
Abstract Let
be an elliptically fibered$$X\rightarrow {{\mathbb {P}}}^1$$ $X\to {P}^{1}$K 3 surface, admitting a sequence of Ricciflat metrics collapsing the fibers. Let$$\omega _{i}$$ ${\omega}_{i}$V be a holomorphicSU (n ) bundle overX , stable with respect to . Given the corresponding sequence$$\omega _i$$ ${\omega}_{i}$ of Hermitian–Yang–Mills connections on$$\Xi _i$$ ${\Xi}_{i}$V , we prove that, ifE is a generic fiber, the restricted sequence converges to a flat connection$$\Xi _i_{E}$$ ${\Xi}_{i}{}_{E}$ . Furthermore, if the restriction$$A_0$$ ${A}_{0}$ is of the form$$V_E$$ ${V}_{E}$ for$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j0)$$ ${\oplus}_{j=1}^{n}{O}_{E}({q}_{j}0)$n distinct points , then these points uniquely determine$$q_j\in E$$ ${q}_{j}\in E$ .$$A_0$$ ${A}_{0}$ 
Abstract We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loopensemble
for$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ in (4, 8) that is drawn on an independent$$\kappa '$$ ${\kappa}^{\prime}$ LQG surface for$$\gamma $$ $\gamma $ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ ${\gamma}^{2}=16/{\kappa}^{\prime}$ for$$\hbox {CLE}_{\kappa }$$ ${\text{CLE}}_{\kappa}$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ $\kappa $ in terms of stable growthfragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$p and . This description was complete up to one missing parameter$$1p$$ $1p$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ $\rho $p and . It shows in particular that$$\kappa '$$ ${\kappa}^{\prime}$ and$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ are related via a continuum analog of the EdwardsSokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ ${\text{CLE}}_{16/{\kappa}^{\prime}}$ percolation and the$$\hbox {FK}_q$$ ${\text{FK}}_{q}$q state Potts model (which makes sense evenmore »