skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Carleson’s $\varepsilon ^{2}$ conjecture in higher dimensions
Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ ε 2 conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ Ω + , Ω R n + 1 , and$$x\in \mathbb{R}^{n+1}$$ x R n + 1 ,$$r>0$$ r > 0 , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ ε n ( x , r ) : = 1 r n inf H + H n ( ( ( B ( x , r ) H + ) Ω + ) ( ( B ( x , r ) H ) Ω ) ) , where the infimum is taken over all open affine half-spaces$$H^{+}$$ H + such that$$x \in \partial H^{+}$$ x H + and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ H = R n + 1 H + . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ x R n + 1 where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ 0 1 ε n ( x , r ) 2 d r r < is$$n$$ n -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ Ω + ,$$\Omega ^{-}$$ Ω are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ Ω + Ω satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ x Ω + Ω and$$r>0$$ r > 0 , we denote by$$\alpha ^{\pm }(x,r)$$ α ± ( x , r ) the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ Ω ± B ( x , r ) . We show that, up to a set of$$\mathcal{H}^{n}$$ H n measure zero,$$x$$ x is a tangent point for both$$\partial \Omega ^{+}$$ Ω + and$$\partial \Omega ^{-}$$ Ω if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ 0 1 min ( 1 , α + ( x , r ) + α ( x , r ) 2 ) d r r < . The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ ε 2 conjecture of Carleson.  more » « less
Award ID(s):
1854147
PAR ID:
10609144
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Verlag
Date Published:
Journal Name:
Inventiones mathematicae
Volume:
241
Issue:
1
ISSN:
0020-9910
Page Range / eLocation ID:
207 to 307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  2. Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ T in$$U\subset \mathbf {R}^{2+n}$$ U R 2 + n with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ , where$$Q\in \mathbf {N} \setminus \{0\}$$ Q N { 0 } and$$\Gamma $$ Γ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ q Γ is a point where the density of$$T$$ T is strictly below$$\frac{Q+1}{2}$$ Q + 1 2 , then the current is regular at$$q$$ q . The regularity is understood in the following sense: there is a neighborhood of$$q$$ q in which$$T$$ T consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ Γ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ Q = 1 . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ Ω R 2 + n is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ Γ Ω a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ T with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ T = Q Γ is regular in a neighborhood of $$\Gamma $$ Γ
    more » « less
  3. Abstract We consider the following stochastic heat equation$$\begin{aligned} \partial _t u(t,x) = \tfrac{1}{2} \partial ^2_x u(t,x) + b(u(t,x)) + \sigma (u(t,x)) {\dot{W}}(t,x), \end{aligned}$$ t u ( t , x ) = 1 2 x 2 u ( t , x ) + b ( u ( t , x ) ) + σ ( u ( t , x ) ) W ˙ ( t , x ) , defined for$$(t,x)\in (0,\infty )\times {\mathbb {R}}$$ ( t , x ) ( 0 , ) × R , where$${\dot{W}}$$ W ˙ denotes space-time white noise. The function$$\sigma $$ σ is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the functionbis assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition$$\begin{aligned} \int _1^\infty \frac{\textrm{d}y}{b(y)}<\infty \end{aligned}$$ 1 d y b ( y ) < implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that$$\textrm{P}\{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } x\in {\mathbb {R}}\}=1.$$ P { u ( t , x ) = for all t > 0 and x R } = 1 . The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022). 
    more » « less
  4. Abstract It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$ L β , γ = - div D d + 1 + γ - n associated to a domain$$\Omega \subset {\mathbb {R}}^n$$ Ω R n with a uniformly rectifiable boundary$$\Gamma $$ Γ of dimension$$d < n-1$$ d < n - 1 , the now usual distance to the boundary$$D = D_\beta $$ D = D β given by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$ D β ( X ) - β = Γ | X - y | - d - β d σ ( y ) for$$X \in \Omega $$ X Ω , where$$\beta >0$$ β > 0 and$$\gamma \in (-1,1)$$ γ ( - 1 , 1 ) . In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$ L β , γ , with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$ D 1 - γ , in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$ | D ( ln ( G D 1 - γ ) ) | 2 satisfies a Carleson measure estimate on$$\Omega $$ Ω . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear). 
    more » « less
  5. We consider minimizing harmonic maps u u from Ω<#comment/> ⊂<#comment/> R n \Omega \subset \mathbb {R}^n into a closed Riemannian manifold N \mathcal {N} and prove: 1. an extension to n ≥<#comment/> 4 n \geq 4 of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold N \mathcal {N} is finite, we have\[ H n −<#comment/> 3 ( sing ⁡<#comment/> u ) ≤<#comment/> C ∫<#comment/> ∂<#comment/> Ω<#comment/> | ∇<#comment/> T u | n −<#comment/> 1 d H n −<#comment/> 1 ; \mathcal {H}^{n-3}(\operatorname {sing} u) \le C \int _{\partial \Omega } |\nabla _T u|^{n-1} \,\mathrm {d}\mathcal {H}^{n-1}; \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is N = S 2 \mathcal {N}=\mathbb {S}^2 we obtain that the singular set of u u is stable under small W 1 , n −<#comment/> 1 W^{1,n-1} -perturbations of the boundary data. In dimension n = 3 n=3 both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space W s , p W^{s,p} with s ∈<#comment/> ( 1 2 , 1 ] s \in (\frac {1}{2},1] and p ∈<#comment/> [ 2 , ∞<#comment/> ) p \in [2,\infty ) satisfying s p ≥<#comment/> 2 sp \geq 2 . We also discuss sharpness. 
    more » « less