skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband pyramid antireflective structure on chalcogenide glasses by the hot embossing method for infrared photonics
Pyramidal antireflective structures were produced by hot embossing single- and double-sides of an amorphous GeSe4optical element. The optical performances were measured across the wavelength range from 2 µm to 15 µm. The transmittance at normal incident angle was increased up to 75.6% and 79.8% for single and double-side embossing respectively. The experimental results were in close agreement with simulation performed using the rigorous coupled-wave analysis (RCWA). Theoretical models also predicted well the transmittance changes as a function of incident angle from 0 ° to 50 ° at a fixed laser wavelength of 5.1 µm. A Fabry-Perot interferometer consisting of two single surface embossed samples is proposed.  more » « less
Award ID(s):
1640860
PAR ID:
10369415
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
12
Issue:
4
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 1638
Size(s):
Article No. 1638
Sponsoring Org:
National Science Foundation
More Like this
  1. As a three-dimensional topological phase of matter, Weyl semimetals possess extremely large gyrotropic optical response in the mid-infrared region, leading to the strong chiral anomaly. This study proposes a circular polarizer design with a double-WSM-layer structure. It is theoretically shown that the proposed polarizer possesses a high circular polarization efficiency and high average transmittance in the wavelength region from 9 µm to 15 µm at incidence angles up to 50°. The modified 4 × 4 matrix method is used to calculate the circularly polarized transmittance of Weyl semimetals in thin-film or multilayer structures. The temperature dependence on the transmittance is also examined to demonstrate the flexibility of the proposed polarizer in a varying temperature environment. This study reveals the technological prospect that Weyl semimetals are promising candidates for high-performance circular polarizers in infrared spectroscopy and polarimetry. 
    more » « less
  2. Fluorocarbon thin films are widely used in protective coatings due to their distinctive physical and chemical properties. However, their inherent lubricating nature often results in low scratch resistance and poor adhesion to substrates. In this study, a beam plasma source was employed to deposit fluorocarbon thin films, resulting in enhanced adhesion and scratch resistance while preserving optical transmittance and hydrophobicity. The beam plasma source can generate high-density plasma, resulting in the effective dissociation of the C4F8 source gas, as evidenced by the large ion current and high film deposition rates. A unique feature of this beam plasma source is that it can simultaneously emit a single broad beam of ions with independently controllable ion energy and flux to interact with the film. The fluorocarbon films exhibit high hydrophobicity with a contact angle of about 105°, a high optical transmittance of 85–90% in the visible wavelength range, and exceptional scratch resistance and durability. 
    more » « less
  3. Smart materials with switchable optical properties may find interesting applications in designing advanced intelligent systems. Herein, the dynamic tuning of optical transmission is reported by controlling the orientation of 1D colloidal assemblies of magnetic nanostructures. Colloidal magnetic nanostructures of Fe3O4, including nanospheres, nanorods, and nanodiscs, are assembled into 1D chains under external magnetic fields. Magnetic tuning of the orientation of the nanochains results in a pronounced contrast in optical transmittance, which is strongly dependent on the size and shape of the primary nanostructures. Contrary to the intuitive expectation, the 1D chains of the nanospheres and nanorods exhibit lower transmittance when they are oriented parallel rather than perpendicular to the incident light, whereas the nanodisc counterpart responds oppositely due to the unique “edge‐to‐edge” assembly mode of the nanodiscs. The dynamic tuning of the optical transmittance through magnetic means is believed to have broad applications in the design of novel switchable optical devices. As an example, the incorporation of orientation‐dependent optical properties of 1D chains into the construction of intelligent polymer films with their transparency sensitive to rotation and bending is demonstrated. 
    more » « less
  4. Abstract Nonradiating optical anapoles are special configurations of charge‐current distributions that do not radiate. It was theoretically predicted that, for microspheres, electric and magnetic dipolar coefficients can simultaneously vanish by engineering the incident light, leading to the excitation of nonradiatinghybridoptical anapoles. In this work, the experimental detection of hybrid optical anapoles in dielectric microspheres (TiO2) is reported using dual detection optical spectroscopy, developed to enable sequential measurement of forward and backward scattering under tightly‐focused Gaussian beam (TFGB) illumination. The results show that the excitation of TiO2microspheres (diameter,d≈1 µm) under TFGB illumination leads to the appearance of scattering minima in both the forward and backward directions within specific wavelength ranges. These scattering minima are found to be due to vanishing electric and magnetic dipolar coefficients associated with hybrid optical anapoles. The ability to confine electromagnetic fields associated with hybrid optical anapoles can give rise to several novel optical phenomena and applications. 
    more » « less
  5. Abstract The development of new optical materials and metamaterials has seen a natural progression toward both nanoscale geometries and dynamic performance. The development of these materials, such as optical metasurfaces which impart discrete, spatially dependent phase shifts on incident light, often benefits from the measurement of transmitted or reflected phase. Careful measurement of phase typically proves difficult to implement, due to high measurement sensitivity to practically unavoidable environmental sources of noise and drift. To date, no characterization technique has yet emerged as a frontrunner for these applications. This challenge is addressed using a custom‐designed three‐beam Mach–Zehnder interferometer capable of continuously referenced measurement of both phase and transmittance, resulting in a 10× reduction of noise and drift and phase measurement standard deviation over 10 min of 0.56° and over 16 h of 2.8°. High measurement stability provided by this method enables samples to be easily characterized under dynamic conditions. Temperature‐dependent measurements are demonstrated with phase‐change material vanadium dioxide (VO2), and with wavelength‐dependent measurements of a dielectric Huygens metasurface supporting a characteristic resonant reflection peak. A Fourier‐based signal filtering technique is applied, reducing measurement uncertainty to 0.13° and enabling discernment of monolayer thickness variations in 2D material MoS2
    more » « less