A concise review is given of astrophysically motivated experimental and theoretical research on Taylor–Couette flow. The flows of interest rotate differentially with the inner cylinder faster than the outer, but are linearly stable against Rayleigh’s inviscid centrifugal instability. At shear Reynolds numbers as large as 10 6 , hydrodynamic flows of this type (quasi-Keplerian) appear to be nonlinearly stable: no turbulence is seen that cannot be attributed to interaction with the axial boundaries, rather than the radial shear itself. Direct numerical simulations agree, although they cannot yet reach such high Reynolds numbers. This result indicates that accretion-disc turbulence is not purely hydrodynamic in origin, at least insofar as it is driven by radial shear. Theory, however, predicts linear magnetohydrodynamic (MHD) instabilities in astrophysical discs: in particular, the standard magnetorotational instability (SMRI). MHD Taylor–Couette experiments aimed at SMRI are challenged by the low magnetic Prandtl numbers of liquid metals. High fluid Reynolds numbers and careful control of the axial boundaries are required. The quest for laboratory SMRI has been rewarded with the discovery of some interesting inductionless cousins of SMRI, and with the recently reported success in demonstrating SMRI itself using conducting axial boundaries. Some outstanding questions and near-future prospects are discussed, especially in connection with astrophysics. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’.
more »
« less
Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability
Abstract The standard magnetorotational instability (SMRI) is a promising mechanism for turbulence and rapid accretion in astrophysical disks. It is a magnetohydrodynamic (MHD) instability that destabilizes otherwise hydrodynamically stable disk flow. Due to its microscopic nature at astronomical distances and stringent requirements in laboratory experiments, SMRI has remained unconfirmed since its proposal, despite its astrophysical importance. Here we report a nonaxisymmetric MHD instability in a modified Taylor-Couette experiment. To search for SMRI, a uniform magnetic field is imposed along the rotation axis of a swirling liquid-metal flow. The instability initially grows exponentially, becoming prominent only for sufficient flow shear and moderate magnetic field. These conditions for instability are qualitatively consistent with SMRI, but at magnetic Reynolds numbers below the predictions of linear analyses with periodic axial boundaries. Three-dimensional numerical simulations, however, reproduce the observed instability, indicating that it grows linearly from the primary axisymmetric flow modified by the applied magnetic field.
more »
« less
- Award ID(s):
- 2108871
- PAR ID:
- 10369481
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Previously we demonstrated that the magnetorotational instability (MRI) grows vigorously in eccentric disks, much as it does in circular disks, and we investigated the nonlinear development of the eccentric MRI without vertical gravity. Here we explore how vertical gravity influences the magnetohydrodynamic (MHD) turbulence stirred by the eccentric MRI. Similar to eccentric disks without vertical gravity, the ratio of Maxwell stress to pressure, or the Shakura–Sunyaevαparameter, remains ∼10−2, and the local sign flip in the Maxwell stress persists. Vertical gravity also introduces two new effects. Strong vertical compression near pericenter amplifies reconnection and dissipation, weakening the magnetic field. Angular momentum transport by MHD stresses broadens the mass distribution over eccentricity at much faster rates than without vertical gravity; as a result, spatial distributions of mass and eccentricity can be substantially modified in just ∼5 to 10 orbits. MHD stresses in the eccentric debris of tidal disruption events may power emission ≳1 yr after disruption.more » « less
-
We investigate the linear stability of a sinusoidal shear flow with an initially uniform streamwise magnetic field in the framework of incompressible magnetohydrodynamics (MHD) with finite resistivity and viscosity. This flow is known to be unstable to the Kelvin–Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD, where dissipation is neglected, provided the magnetic field strength does not exceed a critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate that including viscosity and resistivity introduces two new modes of instability. One of these modes, which we refer to as an Alfvénic Dubrulle–Frisch instability, exists for any non-zero magnetic field strength as long as the magnetic Prandtl number $${{{Pm}}} < 1$$ . We present a reduced model for this instability that reveals its excitation mechanism to be the negative eddy viscosity of periodic shear flows described by Dubrulle & Frisch ( Phys. Rev. A, vol. 43, 1991, pp. 5355–5364). Finally, we demonstrate numerically that this mode saturates in a quasi-stationary state dominated by counter-propagating solitons.more » « less
-
Abstract We investigated the initiation and the evolution of an X7.1-class solar flare observed in NOAA Active Region 13842 on 2024 October 1, based on a data-constrained magnetohydrodynamic (MHD) simulation. The nonlinear force-free field (NLFFF) extrapolated from the photospheric magnetic field about 1 hr before the flare was used as the initial condition for the MHD simulations. The NLFFF reproduces highly sheared field lines that undergo tether-cutting reconnection in the MHD simulation, leading to the formation of a highly twisted magnetic flux rope (MFR), which then erupts rapidly, driven by both torus instability and magnetic reconnection. This paper focuses on the dynamics of the MFR and its role in eruptions. We find that magnetic reconnection in the preeruption phase is crucial in the subsequent eruption driven by the torus instability. Furthermore, our simulation indicates that magnetic reconnection also directly enhances the torus instability. These results suggest that magnetic reconnection is not just a by-product of the eruption due to reconnecting of postflare arcade, but also plays a significant role in accelerating the MFR during the eruption.more » « less
-
Abstract The nonresonant streaming instability (Bell instability) plays a pivotal role in the acceleration and confinement of cosmic rays (CRs), yet the exact mechanism responsible for its saturation and the magnitude of the final amplified magnetic field have not been assessed from first principles. Using a survey of hybrid simulations (with kinetic ions and fluid electrons), we study the evolution of the Bell instability as a function of the parameters of the CR population. We find that at saturation, the magnetic pressure in the amplified field is comparable with the initial CR anisotropic pressure, rather than with the CR energy flux, as previously argued. These results provide a predictive prescription for the total magnetic field amplification expected in the many astrophysical environments where the Bell instability is important.more » « less
An official website of the United States government
