skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: A Green New Balance: Interactions among riparian vegetation plant traits and morphodynamics in alluvial rivers

The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed‐material properties, and flow and sediment regimes. In many rivers, concurrent changes in (1) the composition of riparian vegetation communities as a result of exotic species invasion and (2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review howTamarix, which has invaded many southwestern US waterways, andPopulusspecies, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modelling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found that differences in the crown morphology, stem density, and flexibility ofTamarixcompared toPopulusinfluenced near‐bed flow velocities in a manner that favoured aggradation associated withTamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different forTamarix‐ versusPopulus‐dominated reaches, with faster and greater geomorphic adjustments forTamarix. Collectively, our studies show how plant‐trait differences betweenTamarixandPopulus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure, in addition to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.

more » « less
Award ID(s):
1700517 1660490
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Page Range / eLocation ID:
p. 2410-2436
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Environmental flow releases are an effective tool to meet multiple management objectives, including maintaining river conveyance, restoring naturally functioning riparian plant communities, and controlling invasive species. In this context, predicting plant mortality during floods remains a key area of uncertainty for both river managers and ecologists, particularly with respect to how flood hydraulics and sediment dynamics interact with the plants’ own traits to influence their vulnerability to scour and burial.

    To understand these processes better, we conducted flume experiments to quantify different plant species’ vulnerability to flooding across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit), using sand‐bed rivers in the U.S. southwest as our reference system. We ran 10 experimental floods in a 0.6 m wide flume using live seedlings of cottonwood and tamarisk, which have contrasting morphologies.

    Sediment supply, plant morphology, and patch composition all had significant impacts on plant vulnerability during floods. Floods under sediment deficit conditions, which typically occur downstream of dams, resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. Plants in sparse patches dislodged five times more frequently than in dense patches. Tamarisk plants and patches had greater frontal area, larger basal diameter, longer roots, and lower crown position compared to cottonwood across all seedling heights. These traits were associated with a 75% reduction in tamarisk seedlings’ vulnerability to scour compared to cottonwood.

    Synthesis and applications. Tamarisk's greater survivability helps to explain its vigorous establishment and persistence on regulated rivers where flood magnitudes have been reduced. Furthermore, its documented influence on hydraulics, sediment deposition, and scour patterns in flumes is amplified at larger scales in strongly altered river channels where it has broadly invaded. Efforts to remove riparian vegetation using flow releases to maintain open floodways and/or control the spread of non‐native species will need to consider the target plants’ size, density, and species‐specific traits, in addition to the balance of sediment transport capacity and supply in the river system.

    more » « less
  2. Abstract

    Plants influence river channel topography, but our understanding of the interaction among plants, flow, and sediment is limited, especially when sediment supply is variable. Using laboratory experiments in a recirculating flume with live seedlings in a mobile sand bed, we demonstrate how varying the balance between sediment supply and transport capacity shifts the relationship between plants and bar‐surface topography. Each experimental trial contrasted two sediment conditions, in which initially supply was maintained in equilibrium with transport via sediment recirculation, followed by sediment deficit, in which transport capacity exceeded supply, which was set to zero. For both sediment balances, the topographic response was sensitive to plant size, with larger plants inducing greater aggradation relative to a baseline condition. During sediment equilibrium, the positive relationship between plant size and topographic change also depended on species morphology (multi‐stemmed shrubs versus single‐stemmed plants). Plant morphology effects disappeared when the sediment balance shifted to a deficit, but the presence of plants had a greater impact on the magnitude of change compared to the topographic response under sediment equilibrium. Our results suggest that the interactions among sediment supply, plants, and topography may be strongest on rivers with a balance in sediment supply and transport capacity. Because of the large variability in fluvial sediment supply resulting from natural and anthropogenic influences, these interactions will differ spatially (e.g. longitudinally through a watershed) and at different temporal scales, from single flood events to longer time periods. Copyright © 2016 John Wiley & Sons, Ltd.

    more » « less
  3. Abstract

    Sediment transfer, or connectivity, by aeolian processes between channel-proximal and upland deposits in river valleys is important for the maintenance of river corridor biophysical characteristics. In regulated river systems, dams control the magnitude and duration of discharge. Alterations to the flow regime driven by dams that increase the inundation duration of sediment, or which drive the encroachment of vegetation into areas formerly composed of labile sediment and result in channel narrowing, may reduce sediment transfer from near-channel deposits to uplands via aeolian processes. Employing spatial methods developed by Kaspraket al(2018Prog. Phys. Geogr.), here we use data describing the areal extent of bare (i.e. subaerially exposed and non-vegetated) sediment along 168 km of the Colorado River downstream from Glen Canyon Dam in Grand Canyon, USA, in conjunction with inundation extent modeling to forecast how future flows of this highly regulated river will drive changes in the areal extent of sediment available for aeolian transport. We also compare modern bare sediment area to that which presumably would have existed under pre-dam hydrographs. Over the next two decades, the planned flow regime from Glen Canyon Dam will result in slight decreases in bare sediment area (−1%) on an annual scale. This is in contrast to pre-dam years, when unregulated low flows led to marked increases in bare sediment area as compared to the current discharge regime. Our findings also indicate that ∼75% of bare sediment in the study reach is inundated continuously at present, owing to increased baseflows in the post-dam flow regime; consequently, any reductions in flows below modern-day low discharges have the potential to expose large areas of bare sediment. We use vegetation modeling to quantify areas susceptible to vegetation encroachment under future flows, finding that 80% of bare sediment area is suitable for colonization by invasive tamarisk under the current flow regime. Our findings imply that the Colorado River in Grand Canyon, a system marked by widespread erosion of sediment resources and encroachment of riparian vegetation in the post-dam period, is likely to continue to see decreasing bare sediment extent over the coming decades in the absence of direct intervention through flow regime modification or widespread vegetation removal.

    more » « less
  4. Abstract

    Modeling transport, erosion, and deposition of nonuniform sediment over temporal intervals that are short compared to those characterizing channel bed aggradation and degradation remains an open problem due to the complex quantification of the sediment fluxes between the bed material load and the alluvial deposit. Parker, Paola, and Leclair in 2000 proposed a morphodynamic (PPL) framework to overcome this problem. This framework is used here to model the dispersal of a patch of gravel tracers in three different settings, a laboratory flume, a mountain creek, and a braided river. To simplify the problem, (a) the bed slope, bedload transport rate, and bed configuration are assumed to be constant in space and time (equilibrium), (b) sediment entrainment and deposition are modeled with a constant step length formulation, and (c) the PPL framework is implemented in a one‐dimensional (laterally averaged) model. Model validation against laboratory experiments suggests that, as the transport capacity of the flow increases, the maximum elevation‐specific density of sediment entrainment may migrate downward in the deposit. The comparison between model results and field data shows that the equilibrium solution can reasonably capture tracer dispersal. The equilibrium model can also reproduce subdiffusion and superdiffusion of a patch of tracers in the streamwise direction, depending on the magnitude of the short‐term bed level changes. Finally, the average tracer elevation in a cross‐section decreases in time because particles that are buried deep in the deposit are only rarely reentrained into bedload transport.

    more » « less
  5. Abstract

    The dimensionless critical shear stress (τ*c) needed for the onset of sediment motion is important for a range of studies from river restoration projects to landscape evolution calculations. Many studies simply assume aτ*cvalue within the large range of scatter observed in gravel‐bedded rivers because direct field estimates are difficult to obtain. Informed choices of reach‐scaleτ*cvalues could instead be obtained from force balance calculations that include particle‐scale bed structure and flow conditions. Particle‐scale bed structure is also difficult to measure, precluding wide adoption of such force‐balanceτ*cvalues. Recent studies have demonstrated that bed grain size distributions (GSD) can be determined from detailed point clouds (e.g. using G3Point open‐source software). We build on these point cloud methods to introduce Pro+, software that estimates particle‐scale protrusion distributions andτ*cfor each grain size and for the entire bed using a force‐balance model. We validated G3Point and Pro+ using two laboratory flume experiments with different grain size distributions and bed topographies. Commonly used definitions of protrusion may not produce representativeτ*cdistributions, and Pro+ includes new protrusion definitions to better include flow and bed structure influences on particle mobility. The combined G3Point/Pro+ provided accurate grain size, protrusion andτ*cdistributions with simple GSD calibration. The largest source of error in protrusion andτ*cdistributions were from incorrect grain boundaries and grain locations in G3Point, and calibration of grain software beyond comparing GSD is likely needed. Pro+ can be coupled with grain identifying software and relatively easily obtainable data to provide informed estimates ofτ*c. These could replace arbitrary choices ofτ*cand potentially improve channel stability and sediment transport estimates.

    more » « less