Abstract Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).
more »
« less
Maximizing transmittance in two-photon 3D printed materials for micro-optics in the visible
We characterize three commercial resins suitable for three-dimensional two-photon printing of mm3volume micro-optical components for visible light –IP-S, IP-n162, and IP-Visio– under different print modes and post-processing conditions. Due to the combination of cured resin absorption and bulk scattering, we find a maximum total printed thickness of 4 mm (or greater) for at least 50% transmittance of red light, up to 2 mm for green light, and large maximum thickness variation for blue light (0.1 to 1 mm).
more »
« less
- Award ID(s):
- 1828480
- PAR ID:
- 10369583
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optical Materials Express
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2159-3930
- Format(s):
- Medium: X Size: Article No. 895
- Size(s):
- Article No. 895
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The development of in situ growth methods for the fabrication of high‐quality perovskite single‐crystal thin films (SCTFs) directly on hole‐transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large‐area high‐quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high‐quality large‐size MAPbBr3SCTFs on HTLs is investigated. An optimal “sweet spot” is determined: low interface energy between the precursor solution and substrate, a slow heating rate, and a moderate precursor solution concentration. As a result, the as‐obtained perovskite SCTFs with a thickness of 540 nm achieve a record area to thickness ratio of 1.94 × 104 mm, a record X‐ray diffraction peak full width at half maximum of 0.017°, and an ultralong carrier lifetime of 1552 ns. These characteristics enable the as‐obtained perovskite SCTFs to exhibit a record carrier mobility of 141 cm2V−1s−1and good long‐term structural stability over 360 days.more » « less
-
Motivated by the importance of user engagement as a crucial element in cascading leaving of users from a social network, we study identifying a largest relaxed variant of a degree-based cohesive subgraph: the maximum anchored k-core problem. Given graph [Formula: see text] and integers k and b, the maximum anchored k-core problem seeks to find a largest subset of vertices [Formula: see text] that induces a subgraph with at least [Formula: see text] vertices of degree at least k. We introduce a new integer programming (IP) formulation for the maximum anchored k-core problem and conduct a polyhedral study on the polytope of the problem. We show the linear programming relaxation of the proposed IP model is at least as strong as that of a naïve formulation. We also identify facet-defining inequalities of the IP formulation. Furthermore, we develop inequalities and fixing procedures to improve the computational performance of our IP model. We use benchmark instances to compare the computational performance of the IP model with (i) the naïve IP formulation and (ii) two existing heuristic algorithms. Our proposed IP model can optimally solve half of the benchmark instances that cannot be solved to optimality either by the naïve model or the existing heuristic approaches. Funding: This work is funded by the National Science Foundation (NSF) [Grant DMS-2318790] titled AMPS: Novel Combinatorial Optimization Techniques for Smartgrids and Power Networks. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2022.0024 .more » « less
-
Abstract Nutrient impacts on productivity in stream ecosystems can be obscured by light limitation imposed by canopy cover and water turbidity, thereby creating uncertainties in linking nutrient and productivity regimes. Evaluations of nutrient limitations are often based on a response ratio (RR) quantifying productivity stimulation above ambient levels given augmented nutrient supply. This metric neglects the primacy of light effects on productivity. We propose an alternative approach to quantify nutrient limitations using a “decline ratio” (DR), which quantifies the productivity decline from the maximum established by light availability. The DR treats light as the first‐order control and nutrient depletion as a disturbance causing productivity decline, allowing separation of nutrient and light influences. We used DR to assess nutrient diffusing substrate (NDS) experiments with three nutrients (nitrogen [N], phosphorus [P], iron [Fe]) from five Greenland streams during summer, where light is not limited due to the lack of canopy and low turbidity. We tested two hypotheses: (a) productivity maximum (i.e., highest chlorophyll‐aamong NDS treatments) is controlled by light and (b) DR depends on both light and nutrients. The productivity maximum was strongly predicted by light (R2 = 0.60). The productivity decline induced by N limitation (i.e., DRN) was best explained by light availability when parameterized with either dissolved inorganic nitrogen concentration (R2 = 0.79) or N:Fe ratio (R2 = 0.87). These predictions outperformed predictions of RR for which light was not a significant factor. Reversing the perspective on nutrient limitation from “stimulation above ambient” to “decline below maximum” provides insights into both light and nutrient impacts on stream productivity.more » « less
-
Optofluidic devices that dynamically respond to light stimuli have the potential to impart modern adaptive optics with intrinsic optical logic without the need for external power sources or feedback control. While photo actuation is typically associated with low energy efficiency compared with alternative modes of actuation, fluid lenses can be tuned with minimal work by generating small differential pressures across the surface of the lens to drive a change in focal length. In this study, we developed a wide aperture (9.5 mm) photothermally actuated lens that leverages spatially and thermodynamically informed design principles developed for resistively heated thermo-pneumatically actuated lenses. Using experimentally validated models to describe the curvature of pressurized elastomer-bound interfaces, we demonstrated phototunable modulation of the focal length from 124 mm to 90 mm in real time using 233 mW of 405 nm light over 30 s of irradiation with an estimated 8.2 µJ of mechanical work (10−4% efficiency). The initial focal length recovered after 60 s in the dark over three consecutive cycles of actuation. Additionally, the photoactuated response is shown to correlate well with the light intensity.more » « less
An official website of the United States government
