skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protection gaps in Amazon floodplains will increase with climate change: Insight from the world's largest scaled freshwater fish
Abstract The Amazon floodplains represent important surfaces of highly valuable ecosystems, yet they remain neglected from protected areas. Although the efficiency of the protected area network of the Amazon basin may be jeopardized by climate change, floodplains are exposed to important consequences of climate change but are omitted from species distribution models and protection gap analyses.The present and future (2070) distribution of the giant bony‐tongue fishArapaimaspp. (Arapaimidae) was modelled accounting for climate and habitat requirements, and with a consideration of dam presence (already existing and planned constructions) and hydroperiod (high‐ and low‐water stages). The amount of suitable environment that falls inside and outside the current network of protected areas was quantified to identify spatial conservation gaps.We predict that climate change will cause a decline in environmental suitability by 16.6% during the high‐water stage, and by 19.4% during the low‐water stage. About 70% of the suitable environments ofArapaimaspp. remain currently unprotected. The gap is higher by 0.7% during the low‐water stage. The lack of protection is likely to increase by 5% with future climate change effects. Both existing and projected dam constructions may hamper population flows between the central, Bolivian and Peruvian parts of the basin.We highlight protection gaps mostly in the south‐western part of the basin and recommend the extension of the current network of protected areas in the floodplains of the upper Ucayali, Juruà and Purus rivers and their tributaries. This study has shown the importance of integrating hydroperiod and dispersal barriers in forecasting the distribution of freshwater fish species, and stresses the urgent need to integrate floodplains within the protected area networks.  more » « less
Award ID(s):
1852113
PAR ID:
10369627
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Aquatic Conservation: Marine and Freshwater Ecosystems
Volume:
32
Issue:
11
ISSN:
1052-7613
Page Range / eLocation ID:
p. 1830-1841
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches. 
    more » « less
  2. Abstract Extensive floodplains throughout the Amazon basin support important ecosystem services and influence global water and carbon cycles. A recent change in the hydroclimatic regime of the region, with increased rainfall in the northern portions of the basin, has produced record-breaking high water levels on the Amazon River mainstem. Yet, the implications for the magnitude and duration of floodplain inundation across the basin remain unknown. Here we leverage state-of-the-art hydrological models, supported byin-situand remote sensing observations, to show that the maximum annual inundation extent along the central Amazon increased by 26% since 1980. We further reveal increased flood duration and greater connectivity among open water areas in multiple Amazon floodplain regions. These changes in the hydrological regime of the world’s largest river system have major implications for ecology and biogeochemistry, and require rapid adaptation by vulnerable populations living along Amazonian rivers. 
    more » « less
  3. Abstract Overfishing remains a threat to coral reef fishes worldwide, with large carnivores often disproportionately vulnerable. Marine protected areas (MPAs) can restore fish populations and biodiversity, but their effect has been understudied in mesophotic coral ecosystems (MCEs), particularly in the Coral Triangle.Videos were analysed from baited remote underwater video systems deployed in 2016 to investigate the assemblage structure of large carnivorous fishes at shallow (4–12 m) and mesophotic (45–96 m) depths in two of the largest and most isolated MPAs in the Philippines: an uninhabited, fully no‐take MPA enacted in 1988 (Tubbataha Reefs Natural Park) and an archipelagic municipality surrounded by an extensive but not fully no‐take MPA declared in 2016 (Cagayancillo). Taxa focused on were groupers (Serranidae), snappers (Lutjanidae), emperors (Lethrinidae), jacks (Carangidae) and the endangeredCheilinus undulatus(Labridae).Mean abundance and species richness were not greater in TRNP than in Cagayancillo regardless of depth despite long‐term protection in the former. Limited impacts of fishing in Cagayancillo may explain this result. Differentiation of fish assemblages was evident between TRNP and Cagayancillo but more obvious between depths at each location, probably due more to habitat than MPA effects. In Cagayancillo, overall carnivorous reef fish, grouper and jack mean abundance were 2, 2 and 10 times higher, respectively, at mesophotic depths, suggesting that MCEs can serve as deep refugia from fishing.These findings of differentiation between depths and higher abundance of certain taxa in mesophotic depths emphasize that MCEs are distinct from shallow reefs, serve as important habitat for species susceptible to overfishing and, thus, must be explicitly included in the design of MPAs. This study also highlights the value of maintaining strict protection of MPAs like TRNP for the Coral Triangle and an opportunity to safeguard intact fish assemblages in Cagayancillo by expanding its no‐take zones. 
    more » « less
  4. Abstract Freshwater environments host roughly half of the world’s fish diversity, much of which is concentrated in large, tropical river systems such as the Amazon. Fishes are critical to ecosystem functioning in the Amazon River basin but face increasing human threats. The basic biology of these species, and particularly migratory behaviour, remains poorly studied, in part owing to the difficulty associated with conducting tagging studies in remote tropical regions.Otolith microchemistry can circumvent logistical issues and is an increasingly important tool for studying fish life histories. However, this approach is still new in the Amazon, and its potential and limitations to inform fish conservation strategies remain unclear.Here, otolith microchemistry studies in the Amazon are reviewed, highlighting current possibilities, and several key factors that limit its use as a conservation tool in the Amazon are discussed. These include the dearth of spatiotemporal elemental data, poor understanding of environment–fish–otolith pathways, and insufficient funding, facilities, and equipment.A research initiative is proposed to harness the potential of this technique to support conservation in the Amazon. Key aspects of the proposal include recommendations for internal and external funding, which are critical to acquiring and maintaining technical staff, cutting‐edge equipment, and facilities, as well as fostering regular scientific meetings and working groups. Meetings can facilitate a systematic approach to investigating environment–otolith pathways, broadening the chemical baseline for most Amazonian tributaries, and exploring potential valuable elements.These outcomes are urgently needed to conserve biodiversity and ecosystem functioning in the Amazon, especially given threats such as widespread hydroelectric damming. The initiative proposed here could make otolith microchemistry an important, cost‐effective tool to inform and foster conservation in the Amazon, and act as a template for other imperilled tropical river basins, such as the Mekong and the Congo. 
    more » « less
  5. Abstract Increased ocean temperatures have led to large‐scale declines in many ecologically important species, including kelp forests. Spatial heterogeneity across seascapes could protect kelp individuals and small populations from thermal stress and nutrient limitation. Habitat features within upwelling regions may facilitate the transport of deep, cold water into shallow systems, but little is known about the spatiotemporal occurrence or stability of these climate refugia. Kelp in climate refugia may, however, also experience other stressors, such as overgrazing by kelp herbivores, reducing their effectiveness.Here, we use high‐resolution kelp canopy maps generated from CubeSat constellation data to characterize kelp persistence in northern California following a dramatic decline in kelp abundance due to increased temperature and nutrient limitation during a severe marine heatwave and continued intense grazing pressure by purple sea urchins.Kelp persistence was associated with local areas of relatively cool water temperature and seascape features such as shallow depths and low‐complexity bathymetry, which may have provided refuge from overgrazing. However, a very small percentage of kelp forests in the region exhibited high persistence, with many forests present in only one or two of the 9 years studied. Most kelp patches were not spatially stable over time. Initially, kelp presence aligned with climate refugia, but as overgrazing emerged as the dominant driver of kelp distributions post‐2019, kelp shifted to areas that offered protection from grazing pressure.Synthesis. Cooler areas with localized upwelling acted as climate refugia during the increased ocean temperatures from the 2014–2016 marine heatwave, supporting nutrient‐rich environments and mitigating heat stress for kelp forests. However, these temperature refugia often did not spatially overlap with areas providing protection from grazing pressure, leaving kelp forests vulnerable to future warming even within temperature refugia if grazing pressure remains high. 
    more » « less