skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A survey of deuterated ammonia in the Cepheus star-forming region L1251
ABSTRACT Understanding the chemical processes during starless core and prestellar core evolution is an important step in understanding the initial stages of star and disc formation. This project is a study of deuterated ammonia, o-NH2D, in the L1251 star-forming region towards Cepheus. Twenty-two dense cores (20 of which are starless or prestellar, and two of which have a protostar), previously identified by p-NH3 (1,1) observations, were targeted with the 12m Arizona Radio Observatory telescope on Kitt Peak. o-NH2D J$$_{\rm {K_a} \rm {K_c}}^{\pm } =$$1_{11}^{+} \rightarrow 1_{01}^{-}$$ was detected in 13 (59 per cent) of the NH3-detected cores with a median sensitivity of $$\sigma _{T_{mb}} = 17$$ mK. All cores detected in o-NH2D at this sensitivity have p-NH3 column densities >1014 cm−2. The o-NH2D column densities were calculated using the constant excitation temperature (CTEX) approximation while correcting for the filling fraction of the NH3 source size. The median deuterium fraction was found to be 0.11 (including 3σ upper limits). However, there are no strong, discernible trends in plots of deuterium fraction with any physical or evolutionary variables. If the cores in L1251 have similar initial chemical conditions, then this result is evidence of the cores physically evolving at different rates.  more » « less
Award ID(s):
1653228 1743747
PAR ID:
10369634
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5219-5234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Determining the level of chemical complexity within dense starless and gravitationally bound pre-stellar cores is crucial for constructing chemical models, which subsequently constrain the initial chemical conditions of star formation. We have searched for complex organic molecules (COMs) in the young starless core L1521E, and report the first clear detection of dimethyl ether (CH3OCH3), methyl formate (HCOOCH3), and vinyl cyanide (CH2CHCN). Eight transitions of acetaldehyde (CH3CHO) were also detected, five of which (A states) were used to determine an excitation temperature to then calculate column densities for the other oxygen-bearing COMs. If source size was not taken into account (i.e. if filling fraction was assumed to be one), column density was underestimated, and thus we stress the need for higher resolution mapping data. We calculated L1521E COM abundances and compared them to other stages of low-mass star formation, also finding similarities to other starless/pre-stellar cores, suggesting related chemical evolution. The scenario that assumes formation of COMs in gas-phase reactions between precursors formed on grains and then ejected to the cold gas via reactive desorption was tested and was unable to reproduce observed COM abundances, with the exception of CH3CHO. These results suggest that COMs observed in cold gas are formed not by gas-phase reactions alone, but also through surface reactions on interstellar grains. Our observations present a new, unique challenge for existing theoretical astrochemical models. 
    more » « less
  2. ABSTRACT We study the formation, evolution, and collapse of dense cores by tracking structures in a magnetohydrodynamic simulation of a star-forming cloud. We identify cores using the dendrogram algorithm and utilize machine learning techniques, including Neural Gas prototype learning and Fuzzy c-means clustering to analyse the density and velocity dispersion profiles of cores together with six bulk properties. We produce a 2-d visualization using a Uniform Manifold Approximation and Projection (UMAP), which facilitates the connection between physical properties and three partially-overlapping phases: i) unbound turbulent structures (Phase I), ii) coherent cores that have low turbulence (Phase II), and iii) bound cores, many of which become protostellar (Phase III). Within Phase II, we identify a population of long-lived coherent cores that reach a quasi-equilibrium state. Most prestellar cores form in Phase II and become protostellar after evolving into Phase III. Due to the turbulent cloud environment, the initial core properties do not uniquely predict the eventual evolution, i.e. core evolution is stochastic, and cores follow no one evolutionary path. The phase lifetimes are 1.0 ± 0.1 × 105 yr, 1.3 ± 0.2 × 105 yr, and 1.8 ± 0.3 × 105 yr for Phase I, II, and III, respectively. We compare our results to NH3 observations of dense cores. Known coherent cores predominantly map into Phase II, while most turbulent pressure-confined cores map to Phase I or III. We predict that a significant fraction of observed starless cores have unresolved coherent regions and that ≳20 per cent of observed starless cores will not form stars. Measurements of core radial profiles in addition to the usual bulk properties will enable more accurate predictions of core evolution. 
    more » « less
  3. Dense gas in molecular clouds is an important signature of ongoing and future star formation. We identify and track dense cores in the Starforge simulations, following the core evolution from birth through dispersal by stellar feedback for typical Milky Way cloud conditions. Only ∼8% of cores host protostars, and most disperse before forming stars. The median starless and protostellar core lifetimes are ∼0.5–0.6 Myr and ∼0.8–1.1 Myr, respectively, where the protostellar phase lasts 0.1 Myr. While core evolution is stochastic, we find that virial ratios and line widths decline in prestellar cores, coincident with turbulent decay. Collapse occurs over ∼0.1 Myr, once the central density exceeds ≳106cm−3. Starless cores, only, follow line-width–size and mass–size relations,σ∝R0.3andM∝R1. The core median mass, radius, and velocity dispersion scale weakly with the cloud magnetic field strength. We cluster the core properties and find that protostellar cores have >80% likelihood of belonging to three particular groups that are characterized by high central densities, compact radii, and lower virial parameters. Overall, core evolution appears to be universally set by the interplay of gravity and magnetized turbulence, while stellar feedback dictates protostellar core properties and sets the protostellar phase lifetime. 
    more » « less
  4. ABSTRACT Recent observations indicate that organic molecules are prevalent towards starless and pre-stellar cores. Deuteration of these molecules has not been well studied during the starless phase. Published observations of singly deuterated methanol, CH2DOH, have only been observed in a couple of well-studied, dense, and evolved pre-stellar cores (e.g. L1544, L183). Since the formation of gas-phase methanol during this cold phase is believed to occur via desorption from the icy grain surfaces, observations of CH2DOH may be useful as a probe of the deuterium fraction in the ice mantles of dust grains. We present a systematic survey of CH2DOH towards 12 starless and pre-stellar cores in the B10 region of the Taurus molecular cloud. Nine of the 12 cores are detected with [CH2DOH]/[CH3OH] ranging from <0.04 to 0.23$$^{+0.12}_{-0.06}$$ with a median value of 0.11. Sources not detected tend to have larger virial parameters and larger methanol linewidths than detected sources. The results of this survey indicate that deuterium fractionation of organic molecules, such as methanol, during the starless phase may be more easily detectable than previously thought. 
    more » « less
  5. Abstract G10.21-0.31 is a 70 μ m dark high-mass starless core ( M > 300 M ⊙ within r < 0.15 pc) identified in the Spitzer, Herschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging within 11–18 M ⊙ , characterized by a turbulent fragmentation. Cores 1, 2, and 3 represent a coherent evolution of three different stages, characterized by outflows (CO and SiO), gas temperature (H 2 CO), and deuteration (N 2 D + /N 2 H + ). We confirm the potential for formation of high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time. 
    more » « less