skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A survey of CH2DOH towards starless and pre-stellar cores in the Taurus molecular cloud
ABSTRACT Recent observations indicate that organic molecules are prevalent towards starless and pre-stellar cores. Deuteration of these molecules has not been well studied during the starless phase. Published observations of singly deuterated methanol, CH2DOH, have only been observed in a couple of well-studied, dense, and evolved pre-stellar cores (e.g. L1544, L183). Since the formation of gas-phase methanol during this cold phase is believed to occur via desorption from the icy grain surfaces, observations of CH2DOH may be useful as a probe of the deuterium fraction in the ice mantles of dust grains. We present a systematic survey of CH2DOH towards 12 starless and pre-stellar cores in the B10 region of the Taurus molecular cloud. Nine of the 12 cores are detected with [CH2DOH]/[CH3OH] ranging from <0.04 to 0.23$$^{+0.12}_{-0.06}$$ with a median value of 0.11. Sources not detected tend to have larger virial parameters and larger methanol linewidths than detected sources. The results of this survey indicate that deuterium fractionation of organic molecules, such as methanol, during the starless phase may be more easily detectable than previously thought.  more » « less
Award ID(s):
1653228 1743747
PAR ID:
10332419
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
501
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
347 to 355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cold ($$\sim$$10 K) and dense ($$\sim 10^{5}$$ cm$$^{-3}$$) cores of gas and dust within molecular clouds, known as starless and dynamically evolved pre-stellar cores, are the birthplaces of low-mass (M$$\le$$ few M$$_\odot$$) stars. As detections of interstellar complex organic molecules, or COMs, in starless cores has increased, abundance comparisons suggest that some COMs might be seeded early in the star formation process and inherited to later stages (i.e. protostellar discs and eventually comets). To date observations of COMs in starless cores have been limited, with most detections reported solely in the Taurus molecular cloud. It is therefore still a question whether different environments affect abundances. We have surveyed 35 starless and pre-stellar cores in the Perseus molecular cloud with the Arizona Radio Observatory (ARO) 12 m telescope detecting both methanol, CH$$_3$$OH, and acetaldehyde, CH$$_3$$CHO, in 100 per cent and 49 per cent of the sample, respectively. In the sub-sample of 15 cores where CH$$_3$$CHO was detected at $$\gt 3\sigma$$ ($$\sim$$18 mK) with the ARO 12 m, follow-up observations with the Yebes 40 m telescope were carried out. Detections of formic acid, t-HCOOH, ketene, H$$_2$$CCO, methyl cyanide, CH$$_3$$CN, vinyl cyanide, CH$$_2$$CHCN, methyl formate, HCOOCH$$_3$$, and dimethyl ether, CH$$_3$$OCH$$_3$$, are seen in at least 20 per cent of the cores. We discuss detection statistics, calculate column densities, and compare abundances across various stages of low-mass star formation. Our findings have more than doubled COM detection statistics in cold cores and show COMs are prevalent in the gas before star and planet formation in the Perseus molecular cloud. 
    more » « less
  2. ABSTRACT Determining the level of chemical complexity within dense starless and gravitationally bound pre-stellar cores is crucial for constructing chemical models, which subsequently constrain the initial chemical conditions of star formation. We have searched for complex organic molecules (COMs) in the young starless core L1521E, and report the first clear detection of dimethyl ether (CH3OCH3), methyl formate (HCOOCH3), and vinyl cyanide (CH2CHCN). Eight transitions of acetaldehyde (CH3CHO) were also detected, five of which (A states) were used to determine an excitation temperature to then calculate column densities for the other oxygen-bearing COMs. If source size was not taken into account (i.e. if filling fraction was assumed to be one), column density was underestimated, and thus we stress the need for higher resolution mapping data. We calculated L1521E COM abundances and compared them to other stages of low-mass star formation, also finding similarities to other starless/pre-stellar cores, suggesting related chemical evolution. The scenario that assumes formation of COMs in gas-phase reactions between precursors formed on grains and then ejected to the cold gas via reactive desorption was tested and was unable to reproduce observed COM abundances, with the exception of CH3CHO. These results suggest that COMs observed in cold gas are formed not by gas-phase reactions alone, but also through surface reactions on interstellar grains. Our observations present a new, unique challenge for existing theoretical astrochemical models. 
    more » « less
  3. ABSTRACT Understanding the chemical processes during starless core and prestellar core evolution is an important step in understanding the initial stages of star and disc formation. This project is a study of deuterated ammonia, o-NH2D, in the L1251 star-forming region towards Cepheus. Twenty-two dense cores (20 of which are starless or prestellar, and two of which have a protostar), previously identified by p-NH3 (1,1) observations, were targeted with the 12m Arizona Radio Observatory telescope on Kitt Peak. o-NH2D J$$_{\rm {K_a} \rm {K_c}}^{\pm } =$$1_{11}^{+} \rightarrow 1_{01}^{-}$$ was detected in 13 (59 per cent) of the NH3-detected cores with a median sensitivity of $$\sigma _{T_{mb}} = 17$$ mK. All cores detected in o-NH2D at this sensitivity have p-NH3 column densities >1014 cm−2. The o-NH2D column densities were calculated using the constant excitation temperature (CTEX) approximation while correcting for the filling fraction of the NH3 source size. The median deuterium fraction was found to be 0.11 (including 3σ upper limits). However, there are no strong, discernible trends in plots of deuterium fraction with any physical or evolutionary variables. If the cores in L1251 have similar initial chemical conditions, then this result is evidence of the cores physically evolving at different rates. 
    more » « less
  4. Context. Hot molecular cores correspond to the phase of star formation during which many molecules, in particular complex organic molecules (COMs), thermally desorb from the surface of dust grains. Sophisticated kinetic models of interstellar chemistry describe the processes that lead to the formation and subsequent evolution of COMs in star-forming regions. Aims. Our goal is to derive the chemical composition of hot cores in order to improve our understanding of interstellar chemistry. In particular, we want to test the models by comparing their predictions to the observed composition of the gas phase of hot cores. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an imaging spectral line survey of the high mass star-forming region Sagittarius B2(N) at 3 mm, called Re-exploring Molecular Complexity with ALMA (ReMoCA). We modeled under the assumption of local thermodynamic equilibrium the spectra obtained with this survey toward the sources embedded in the secondary hot core Sgr B2(N2). We compared the chemical composition of these sources to that of sources from the literature and to predictions of the chemical kinetics model MAGICKAL. Results. We detected up to 58 molecules toward Sgr B2(N2)’s hot cores, including up to 24 COMs, as well as many less abundant isotopologs. The compositions of some pairs of sources are well correlated, but differences also exist, in particular for HNCO and NH2CHO. The abundances of series of homologous molecules drop by about one order of magnitude at each further step in complexity. The nondetection of radicals yields stringent constraints on the models. The comparison to the chemical models confirms previous evidence of a high cosmic-ray ionization rate in Sgr B2(N). The comparison to sources from the literature gives a new insight into chemical differentiation. The composition of most hot cores of Sgr B2(N2) is tightly correlated to that of the hot core G31.41+0.31 and the hot corino IRAS 16293–2422 B after normalizing the abundances by classes of molecules (O-bearing, N-bearing, O+N-bearing, and S-bearing). There is no overall correlation between Sgr B2(N2) and the shocked region G+0.693−0.027 also located in Sgr B2, and even less with the cold starless core TMC-1. The class of N-bearing species reveals the largest variance among the four classes of molecules. The S-bearing class shows in contrast the smallest variance. Conclusions. These results imply that the class of N-bearing molecules reacts more sensitively to shocks, low-temperature gas phase chemistry after nonthermal desorption, or density. The overall abundance shifts observed between the N-bearing and O-bearing molecules may indicate how violently and completely the ice mantles are desorbed. 
    more » « less
  5. null (Ed.)
    We present the results of a molecular survey of comet 46P/Wirtanen undertaken with the IRAM 30-m and NOEMA radio telescopes in December 2018. Observations at IRAM 30-m during the 12–18 December period comprise a 2 mm spectral survey covering 25 GHz and a 1 mm survey covering 62 GHz. The gas outflow velocity and kinetic temperature have been accurately constrained by the observations. We derive abundances of 11 molecules, some being identified remotely for the first time in a Jupiter-family comet, including complex organic molecules such as formamide, ethylene glycol, acetaldehyde, or ethanol. Sensitive upper limits on the abundances of 24 other molecules are obtained. The comet is found to be relatively rich in methanol (3.4% relative to water), but relatively depleted in CO, CS, HNC, HNCO, and HCOOH. 
    more » « less