Title: A Highly Water‐ and Air‐Stable Iron‐Containing MRI Contrast Agent Sensor for H 2 O 2
Abstract A highly water‐ and air‐stable Fe(II) complex with the quinol‐containing macrocyclic ligand H4qp4 reacts with H2O2to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or twopara‐quinones. The reaction increases theT1‐weighted relaxivity over four‐fold, enabling the complex to detect H2O2using clinical MRI technology. The iron‐containing sensor differs from its recently characterized manganese analog, which also detects H2O2, in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity. more »« less
Karbalaei, Sana; Franke, Alicja; Zahl, Achim; Pokkuluri, P Raj; Beyers, Ronald J; Ivanović-Burmazović, Ivana; Goldsmith, Christian R
(, Chemical Communications)
A highly air- and water-stable Fe(ii) complex with a fluorinated ligand has a strong19F MRI signal but is a poorT1-weighted1H MRI contrast agent. Upon oxidation by H2O2, the19F MRI signal decays as the relaxivity for1H MRI markedly improves.
Abstract A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.
Abstract The reduction of dioxygen to produce selectively H2O2or H2O is crucial in various fields. While platinum‐based materials excel in 4H+/4e−oxygen reduction reaction (ORR) catalysis, cost and resource limitations drive the search for cost‐effective and abundant transition metal catalysts. It is thus of great importance to understand how the selectivity and efficiency of 3d‐metal ORR catalysts can be tuned. In this context, we report on a Co complex supported by a bisthiolate N2S2‐donor ligand acting as a homogeneous ORR catalyst in acetonitrile solutions both in the presence of a one‐electron reducing agent (selectivity for H2O of 93 % and TOFi=3 000 h−1) and under electrochemically‐assisted conditions (0.81 V <η<1.10 V, selectivity for H2O between 85 % and 95 %). Interestingly, such a predominant 4H+/4e−pathway for Co‐based ORR catalysts is rare, highlighting the key role of the thiolate donor ligand. Besides, the selectivity of this Co catalyst under chemical ORR conditions is inverse with respect to the Mn and Fe catalysts supported by the same ligand, which evidences the impact of the nature of the metal ion on the ORR selectivity.
Li, Yan; Abelson, Chase; Que, Lawrence; Wang, Dong
(, Proceedings of the National Academy of Sciences)
The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds.
Wang, Jia; Zhang, Chaojiang; Marks, Joshua H; Kaiser, Ralf I
(, The Astrophysical Journal)
Abstract Oxygen-containing complex organic molecules are key precursors to biorelevant compounds fundamental for the origins of life. However, the untangling of their interstellar formation mechanisms has just scratched the surface, especially for oxygen-containing cyclic molecules. Here, we present the first laboratory simulation experiments featuring the formation of all three C2H4O isomers—ethylene oxide (c–C2H4O), acetaldehyde (CH3CHO), and vinyl alcohol (CH2CHOH)—in low-temperature model interstellar ices composed of carbon monoxide (CO) and ethanol (C2H5OH). Ice mixtures were exposed to galactic cosmic-ray proxies with an irradiation dose equivalent to a cold molecular cloud aged (7 ± 2) × 105yr. These biorelevant species were detected in the gas phase through isomer-selective photoionization reflectron time-of-flight mass spectrometry during temperature-programmed desorption. Isotopic labeling experiments reveal that ethylene oxide is produced from ethanol alone, providing the first experimental evidence to support the hypothesis that ethanol serves as a precursor to the prototype epoxide in interstellar ices. These findings reveal feasible pathways for the formation of all three C2H4O isomers in ethanol-rich interstellar ices, offering valuable constraints on astrochemical models for their formation. Our results suggest that ethanol is a critical precursor to C2H4O isomers in interstellar environments, representing a critical step toward unraveling the formation mechanisms of oxygen-containing cyclic molecules, aldehydes, and their enol tautomers from alcohols in interstellar ices.
@article{osti_10369666,
place = {Country unknown/Code not available},
title = {A Highly Water‐ and Air‐Stable Iron‐Containing MRI Contrast Agent Sensor for H 2 O 2},
url = {https://par.nsf.gov/biblio/10369666},
DOI = {10.1002/chem.202201179},
abstractNote = {Abstract A highly water‐ and air‐stable Fe(II) complex with the quinol‐containing macrocyclic ligand H4qp4 reacts with H2O2to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or twopara‐quinones. The reaction increases theT1‐weighted relaxivity over four‐fold, enabling the complex to detect H2O2using clinical MRI technology. The iron‐containing sensor differs from its recently characterized manganese analog, which also detects H2O2, in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity.},
journal = {Chemistry – A European Journal},
volume = {28},
number = {46},
publisher = {Wiley Blackwell (John Wiley & Sons)},
author = {Karbalaei, Sana and Franke, Alicja and Jordan, Aubree and Rose, Cayla and Pokkuluri, P_Raj and Beyers, Ronald_J and Zahl, Achim and Ivanović‐Burmazović, Ivana and Goldsmith, Christian_R},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.