skip to main content


Title: A theory of finite tensile deformation of double‐network hydrogels
Abstract

A continuum damage model was developed to describe the finite tensile deformation of tough double‐network (DN) hydrogels synthesized by polymerization of a water‐soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading‐unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3‐sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto‐plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.

 
more » « less
NSF-PAR ID:
10369688
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
60
Issue:
16
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2476-2487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The majority of 3D‐printed biodegradable biomaterials are brittle, limiting their application to compliant tissues. Poly(glycerol sebacate) acrylate (PGSA) is a synthetic biocompatible elastomer and compatible with light‐based 3D printing. In this article, digital‐light‐processing (DLP)‐based 3D printing is employed to create a complex PGSA network structure. Nature‐inspired double network (DN) structures consisting of interconnected segments with different mechanical properties are printed from the same material in a single shot. Such capability has not been demonstrated by any other fabrication techniques so far. The biocompatibility of PGSA is confirmed via cell‐viability analysis. Furthermore, a finite‐element analysis (FEA) model is used to predict the failure of the DN structure under uniaxial tension. FEA confirms that the DN structure absorbs 100% more energy before rupture by using the soft segments as sacrificial elements while the hard segments retain structural integrity. Using the FEA‐informed design, a new DN structure is printed and tensile test results agree with the simulation. This article demonstrates how geometrically‐optimized material design can be easily and rapidly constructed by DLP‐based 3D printing, where well‐defined patterns of different stiffnesses can be simultaneously formed using the same elastic biomaterial, and overall mechanical properties can be specifically optimized for different biomedical applications.

     
    more » « less
  2. Abstract

    Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of a hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers.

     
    more » « less
  3. null (Ed.)
    This paper is devoted to the development of a continuum theory for materials having granular microstructure and accounting for some dissipative phenomena like damage and plasticity. The continuum description is constructed by means of purely mechanical concepts, assuming expressions of elastic and dissipation energies as well as postulating a hemi-variational principle, without incorporating any additional postulate like flow rules. Granular micromechanics is connected kinematically to the continuum scale through Piola's ansatz. Mechanically meaningful objective kinematic descriptors aimed at accounting for grain-grain relative displacements in finite deformations are proposed. Karush-Kuhn-Tucker (KKT) type conditions, providing evolution equations for damage and plastic variables associated to grain-grain interactions, are derived solely from the fundamental postulates. Numerical experiments have been performed to investigate the applicability of the model. Cyclic loading-unloading histories have been considered to elucidate the material-hysteretic features of the continuum, which emerge from simple grain-grain interactions. We also assess the competition between damage and plasticity, each having an effect on the other. Further, the evolution of the load-free shape is shown not only to assess the plastic behavior, but also to make tangible the point that, in the proposed approach, plastic strain is found to be intrinsically compatible with the existence of a placement function. 
    more » « less
  4. Strands produced from small-diameter timbers of lodgepole and ponderosa pine were used to fabricate a composite sandwich structure as a replacement for traditional building envelope materials, such as roofing. It is beneficial to develop models that are verified to predict the behavior of these sandwich structures under typical service loads. When used for building envelopes, these structural panels are subjected to bending due to wind, snow, live, and dead loads during their service life. The objective of this study was to develop a theoretical and a finite element (FE) model to evaluate the elastic bending behavior of the wood-strand composite sandwich panel with a biaxial corrugated core. The effect of shear deformation was shown to be negligible by applying two theoretical models, the Euler–Bernoulli and Timoshenko beam theories. Tensile tests were conducted to obtain the material properties as inputs into the models. Predicted bending stiffness of the sandwich panels using Euler-Bernoulli, Timoshenko, and FE models differed from the experimental results by 3.6%, 5.2%, and 6.5%, respectively. Using FE and theoretical models, a sensitivity analysis was conducted to explore the effect of change in bending stiffness due to intrinsic variation in material properties of the wood composite material. 
    more » « less
  5. This study investigates the effects of pores on the mechanical properties of metals produced by additive manufacturing, which can limit strength and ductility. This research aims to both measure and model the rate of crack growth emanating from these pores in additively manufactured Ti-6Al-4 V fabricated with laser powder bed fusion. Uniaxial tensile samples containing intentionally embedded penny-shaped pores were mechanically tested to failure, and loading was interrupted by a series of unload steps to measure the stiffness degradation with load. The factors contributing to reduction in stiffness, namely (1) elastic and plastic changes to geometry, (2) the effect of plastic deformation on modulus, and (3) crack growth, were deconvoluted through finite element modeling, and the crack size was estimated at each unloading step. The stiffness-based method was able to detect stable crack growth in samples with large pores (1.6% to 11% of the cross-sectional area). Crack growth as a function of strain was fit to a model where the crack driving force was based on equivalent strain and a model where the crack driving force was based on energy release rate. Significant crack growth occurred only after the onset of necking in samples containing small pores, while samples containing large pores experienced continuous crack growth with strain. 
    more » « less