skip to main content


Title: Predictive Models for Elastic Bending Behavior of a Wood Composite Sandwich Panel
Strands produced from small-diameter timbers of lodgepole and ponderosa pine were used to fabricate a composite sandwich structure as a replacement for traditional building envelope materials, such as roofing. It is beneficial to develop models that are verified to predict the behavior of these sandwich structures under typical service loads. When used for building envelopes, these structural panels are subjected to bending due to wind, snow, live, and dead loads during their service life. The objective of this study was to develop a theoretical and a finite element (FE) model to evaluate the elastic bending behavior of the wood-strand composite sandwich panel with a biaxial corrugated core. The effect of shear deformation was shown to be negligible by applying two theoretical models, the Euler–Bernoulli and Timoshenko beam theories. Tensile tests were conducted to obtain the material properties as inputs into the models. Predicted bending stiffness of the sandwich panels using Euler-Bernoulli, Timoshenko, and FE models differed from the experimental results by 3.6%, 5.2%, and 6.5%, respectively. Using FE and theoretical models, a sensitivity analysis was conducted to explore the effect of change in bending stiffness due to intrinsic variation in material properties of the wood composite material.  more » « less
Award ID(s):
1150316
NSF-PAR ID:
10185060
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Forests
Volume:
11
Issue:
6
ISSN:
1999-4907
Page Range / eLocation ID:
624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    During this study, full-size wood composite sandwich panels, 1.2 m by 2.4 m (4 ft by 8 ft), with a biaxial corrugated core were evaluated as a building construction material. Considering the applications of this new building material, including roof, floor, and wall paneling, sandwich panels with one and two corrugated core(s) were fabricated and experimentally evaluated. Since primary loads applied on these sandwich panels during their service life are live load, snow load, wind, and gravity loads, their bending and compression behavior were investigated. To improve the thermal characteristics, the cavities within the sandwich panels created by the corrugated geometry of the core were filled with a closed-cell foam. The R-values of the sandwich panels were measured to evaluate their energy performance. Comparison of the weight indicated that fabrication of a corrugated panel needs 74% less strands and, as a result, less resin compared to a strand-based composite panel, such as oriented strand board (OSB), of the same size and same density. Bending results revealed that one-layer core sandwich panels with floor applications under a 4.79 kPa (100 psf) bending load are able to meet the smallest deflection limit of L/360 when the span length (L) is 137.16 cm (54 in) or less. The ultimate capacity of two-layered core sandwich panels as a wall member was 94% and 158% higher than the traditional walls with studs under bending and axial compressive loads, respectively. Two-layered core sandwich panels also showed a higher ultimate capacity compared to structural insulated panels (SIP), at 470% and 235% more in bending and axial compression, respectively. Furthermore, normalized R-values, the thermal resistance, of these sandwich panels, even with the presence of thermal bridging due to the core geometry, was about 114% and 109% higher than plywood and oriented strand board, respectively. 
    more » « less
  2. Abstract A preliminary experimental evaluation of duration of load and creep effects of lightweight wood-strand sandwich panels (lwW-SSP) was conducted following ASTM D6815-09 to determine the equivalence to the duration of load and creep effects of visually graded lumber as specified in Practice D245. The modulus of rupture (MOR) of lwW-SSP was obtained using four-point bending tests to evaluate their creep and load behavior at three stress levels (15, 40 and 65% of MOR). Two different widths were considered to observe the effect of this parameter. lwW-SSP preformed well under long-term loads, as tertiary creep was not observed at all stress levels and the strain rate decreased over time. The panels met the criteria specified in the standard. None of the specimens failed, the creep rate decreased and the fractional deflection was <2. Accordingly, the duration of load factors of visually graded lumber is applicable to these panels. For the theoretical evaluation of solid wood behavior, viscoelastic models can also be applied to describe the creep behavior of lwW-SSP with wood-strand corrugated cores. An exponential viscoelastic model consisting of five elements accurately approximates the experimental creep behavior of three-dimensional (3D) core sandwich panel. 
    more » « less
  3. This study investigates three types of foam core materials used in composite sandwich structures at various densities: H60, H100, F50, F90, PN115, PN200 and PN250. Three-point bending test is conducted to determine relationships between material and flexural properties at both room and low temperature Arctic conditions. X-ray micro-computed tomography is utilized to observe the microstructural relationships between foam density and mechanical properties of the core. This study evaluates Arctic temperature effects on mechanical properties for various types of foam core at varying densities with the intention for future Arctic applications. Although foam core materials become more brittle at a lower temperature, their flexural stiffness and flexural strength are further increased. However, due to the enhanced brittleness, the energy required for fracture is significantly reduced at low temperature conditions. This study utilizes statistical analysis to create contour plots and linear regression equations to predict flexural properties as a function of temperature and foam density. Molecular dynamics simulation is employed to verify experimental results to elucidate the effect of temperature on material behavior. This work provides a deeper understanding of how flexural strength relates to foam density, adding to existing data on foam strength properties under compressive, shear and tensile loads.

     
    more » « less
  4. Ionic polymer metal composites (IPMCs) are a class of soft electroactive polymers. IPMCs comprise a soft ionic polymer core, on which two stiff metal electrodes are plated. These active materials exhibit large bend- ing upon the application of a small driving voltage across their electrodes, in air or in aqueous environments. In a recent work, we presented compelling theoretical and numerical evidence suggesting that ionic polymer membranes exhibit complex multiaxial deformations neglected by reduced-order structural models. Where most beam theories (including Euler-Bernoulli, Timoshenko, and most higher-order shear deformation models) would suggest vanishing through-the-thickness deformation, we discover the onset of localized deformation that rever- berates into axial stretching. Building upon this effort, here we investigate the role of the electrodes and shear on multiaxial deformations of IPMCs. We establish a novel structural theory for IPMCs, based on the Euler- Bernoulli kinematics enriched with the through-the-thickness deformation in the ionic polymer, computed from a Saint-Venant-like problem for uniform bending. While considering boundary conditions that elicit non-uniform bending, we compare the results of this model against classical Euler-Bernoulli beam theory without enrichment and finite element simulations, encapsulating the nonlinear response of the material. We demonstrate that our theory can predict the macroscopic displacement of the IPMC, along with the localized deformation in the ionic polymer at the interface with the electrodes, which are not captured by the classical Euler-Bernoulli beam theory. This work paves the way to the development of more sophisticated structural theories for IPMCs and analogous active materials, affording an accurate description of deformations at a limited computational cost. 
    more » « less
  5. Abstract

    A beam element is constructed for microtubules based upon data reduction of the results from atomistic simulation of the carbon backbone chain of‐tubulin dimers. The database of mechanical responses to various types of loads from atomistic simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler–Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data‐driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.

     
    more » « less