skip to main content


Title: Optimal finite-time processes in weakly driven overdamped Brownian motion
Abstract

The complete physical understanding of the optimization of the thermodynamic work still is an important open problem in stochastic thermodynamics. We address this issue using the Hamiltonian approach of linear response theory in finite time and weak processes. We derive the Euler–Lagrange equation associated and discuss its main features, illustrating them using the paradigmatic example of driven Brownian motion in overdamped regime. We show that the optimal protocols obtained either coincide, in the appropriate limit, with the exact solutions by stochastic thermodynamics or can be even identical to them, presenting the well-known jumps. However, our approach reveals that jumps at the extremities of the process are a good optimization strategy in the regime of fast but weak processes for any driven system. Additionally, we show that fast-but-weak optimal protocols are time-reversal symmetric, a property that has until now remained hidden in the exact solutions far from equilibrium.

 
more » « less
Award ID(s):
2010127
NSF-PAR ID:
10369700
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics Communications
Volume:
6
Issue:
8
ISSN:
2399-6528
Page Range / eLocation ID:
Article No. 083001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes—which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems. 
    more » « less
  2. Abstract

    We analyze the fluctuation-driven escape of particles from a metastable state under the influence of a weak periodic force. We develop an asymptotic method to solve the appropriate Fokker–Planck equation with mixed natural and absorbing boundary conditions. The approach uses two boundary layers flanking an interior region; most of the probability is concentrated within the boundary layer near the metastable point of the potential and particles transit the interior region before exiting the domain through the other boundary layer, which is near the unstable maximal point of the potential. The dominant processes in each region are given by approximate time-dependent solutions matched to construct the approximate composite solution, which gives the rate of escape with weak periodic forcing. Using reflection we extend the method to a double well potential influenced by white noise and weak periodic forcing, and thereby derive a two-state stochastic model—the simplest treatment of stochastic resonance theory—in the nonadiabatic limit.

     
    more » « less
  3. Living systems are built from microscopic components that function dynamically; they generate work with molecular motors, assemble and disassemble structures such as microtubules, keep time with circadian clocks, and catalyze the replication of DNA. How do we implement these functions in synthetic nanostructured materials to execute them before the onset of dissipative losses? Answering this question requires a quantitative understanding of when we can improve performance and speed while minimizing the dissipative losses associated with operating in a fluctuating environment. Here, we show that there are four modalities for optimizing dynamical functions that can guide the design of nanoscale systems. We analyze Markov models that span the design space: a clock, ratchet, replicator, and self-assembling system. Using stochastic thermodynamics and an exact expression for path probabilities, we classify these models of dynamical functions based on the correlation of speed with dissipation and with the chosen performance metric. We also analyze random networks to identify the model features that affect their classification and the optimization of their functionality. Overall, our results show that the possible nonequilibrium paths can determine our ability to optimize the performance of dynamical functions, despite ever-present dissipation, when there is a need for speed. 
    more » « less
  4. We study an inventory management mechanism that uses two stochastic programs (SPs), the customary one‐period assemble‐to‐order (ATO) model and its relaxation, to conceive control policies for dynamic ATO systems. We introduce a class of ATO systems, those that possess what we call a “chained BOM.” We prove that having a chained BOM is a sufficient condition for both SPs to beconvex in the first‐stage decision variables. We show by examples the necessity of the condition. For ATO systems with a chained BOM, our result implies that the optimal integer solutions of the SPs can be found efficiently, and thus expedites the calculation of control parameters. The M system is a representative chained BOM system with two components and three products. We show that in this special case, the SPs can be solved as a one‐stage optimization problem. The allocation policy can also be reduced to simple, intuitive instructions, of which there are four distinct sets, one for each of four different parameter regions. We highlight the need for component reservation in one of these four regions. Our numerical studies demonstrate that achieving asymptotic optimality represents a significant advantage of the SP‐based approach over alternative approaches. Our numerical comparisons also show that outside of the asymptotic regime, the SP‐based approach has a commanding lead over the alternative policies. Our findings indicate that the SP‐based approach is a promising inventory management strategy that warrants further development for more general systems and practical implementations.

     
    more » « less
  5. This work addresses inverse linear optimization, where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, compared with other existing methods, allows the recovery of a less restrictive and generally more appropriate admissible set of cost estimates. It can be shown that this inverse optimization problem yields a finite number of solutions, and we develop an exact two-phase algorithm to determine all such solutions. Moreover, we propose an efficient decomposition algorithm to solve large instances of the problem. The algorithm extends naturally to an online learning environment where it can be used to provide quick updates of the cost estimate as new data become available over time. For the online setting, we further develop an effective adaptive sampling strategy that guides the selection of the next samples. The efficacy of the proposed methods is demonstrated in computational experiments involving two applications: customer preference learning and cost estimation for production planning. The results show significant reductions in computation and sampling efforts. Summary of Contribution: Using optimization to facilitate decision making is at the core of operations research. This work addresses the inverse problem (i.e., inverse optimization), which aims to infer unknown optimization models from decision data. It is, conceptually and computationally, a challenging problem. Here, we propose a new formulation of the data-driven inverse linear optimization problem and develop an efficient decomposition algorithm that can solve problem instances up to a scale that has not been addressed previously. The computational performance is further improved by an online adaptive sampling strategy that substantially reduces the number of required data points. 
    more » « less