Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle. 
                        more » 
                        « less   
                    
                            
                            Increased Erosion Rates Following the Onset of Pleistocene Periglaciation at Bear Meadows, Pennsylvania, USA
                        
                    
    
            Abstract Direct measurements of erosional response to past climate change are scarce, but mid‐latitude landscapes can record how shifts between cold and warm periods altered erosion outside glacial margins. To study hillslope responses to periglaciation, we measured bulk geochemistry and cosmogenic10Be and26Al concentrations in colluvium and weathered bedrock in an 18 m regolith core from Bear Meadows, Pennsylvania, ∼100 km south of maximum glacial extent. Using core lithology, cosmogenic nuclide concentrations, and regional10Be‐derived erosion rates, we show the onset of 100‐Kyr glacial cycles at the Mid‐Pleistocene Transition (1.2–0.7 Ma) instigated multiple periglacial episodes in central Appalachia, increasing erosion rates compared to the relatively warmer Neogene. Our results show the higher efficiency of periglacial versus temperate erosion processes and highlight a pervasive Pleistocene periglacial erosion signal preserved in the10Be inventory of surface sediments in central Appalachia, where erosion rates are slow enough to integrate previous cold‐climate processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1735676
- PAR ID:
- 10369779
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. We used mapping of bedrock lithology, bedrock fractures, and lake density in Inglefield Land, northwestern Greenland, combined with cosmogenic nuclide (10Be and 26Al) measurements in bedrock surfaces, to investigate glacial erosion and the ice sheet history of the northwestern Greenland Ice Sheet. The pattern of eroded versus weathered bedrock surfaces and other glacial erosion indicators reveal temporally and spatially varying erosion under cold- and warm-based ice. All of the bedrock surfaces that we measured in Inglefield Land contain cosmogenic nuclide inheritance with apparent 10Be ages ranging from 24.9 ± 0.5 to 215.8 ± 7.4 ka. The 26Al/10Be ratios require minimum combined surface burial and exposure histories of ∼ 150 to 2000 kyr. Because our sample sites span a relatively small area that experienced a similar ice sheet history, we attribute differences in nuclide concentrations and ratios to varying erosion during the Quaternary. We show that an ice sheet history with ∼ 900 kyr of exposure and ∼ 1800 kyr of ice cover throughout the Quaternary is consistent with the measured nuclide concentrations in most samples when sample-specific subaerial erosion rates are between 0 and 2 × 10−2 mm yr−1 and subglacial erosion rates are between 0 and 2 × 10−3 mm yr−1. These erosion rates help to characterize Arctic landscape evolution in crystalline bedrock terrains in areas away from focused ice flow.more » « less
- 
            Abstract The connection between topography and erosion rate is central to understanding landscape evolution and sediment hazards. However, investigation of this relationship in steep landscapes has been limited due to expectations of: (a) decoupling between erosion rate and “threshold” hillslope morphology; and (b) bias in detrital cosmogenic nuclide erosion rates due to deep‐seated landslides. Here we compile 120 new and published10Be erosion rates from catchments in the San Gabriel Mountains, California, and show that hillslope morphology and erosion rate are coupled for slopes approaching 50° due to progressive exposure of bare bedrock with increasing erosion rate. We find no evidence for drainage area dependence in10Be erosion rates in catchments as small as 0.09 km2, and we show that landslide deposits influence erosion rate estimates mainly by adding scatter. Our results highlight the potential and importance of sampling small catchments to better understand steep hillslope processes.more » « less
- 
            Abstract Tropical islands, including many in island arcs, are subjected to recurring disturbances from extreme storms such as tropical cyclones. To test whether such storms influence cosmogenic nuclide concentrations such that they do not reflect long‐term rates of erosion, we measured meteoric andin situ10Be in river sediment samples from Dominica, an andesitic island in the Caribbean, before and after category five Hurricane Maria (in 2017). Populations of before‐ and after‐storm concentrations are statistically indistinguishable (n = 7 pairs forin‐situ10Be,n = 11 pairs for meteoric10Be).10Be concentrations vary from −138% to +73% within before–after sample pairs relative to the mean of the pair. These new data suggest that the effects of extreme storms on the depth and amount of near‐surface erosion on Dominica vary spatially. Our data support the calculations of Niemi et al. (2005) and Yanites et al. (2009) suggesting that basin‐by‐basin comparisons of erosion rates based on cosmogenic nuclides should be approached with caution in small (<~100 km2) watersheds affected by mass movements and extreme storms. Erosion rates determined fromin‐situ10Be on Dominica (geometric mean = 0.102 mm y−1,n = 12) are low compared to similarly steep and wet areas globally and correlate positively with the spatial density of mass movements.more » « less
- 
            Abstract Using offshore detrital apatite (U‐Th)/He thermochronometry and 3D thermo‐kinematic modeling of the catchment topography, we constrain the timing of major topographic change at Bourgeois Fjord, Antarctic Peninsula (AP). While many mid‐latitude glacial landscapes developed primarily in response to global cooling over the last ~2.6 Ma, we find that kilometer‐scale landscape evolution at Bourgeois Fjord began ~30–12 Ma ago and <2 km of valley incision has occurred since ~16 Ma. This early onset of major topographic change occurred following the initiation of alpine glaciation at this location and prior to the development of a regional polythermal ice sheet inferred from sedimentary evidence offshore of the AP. We hypothesize that topographic change relates to (i) feedbacks between an evolving topography and glacial erosion processes, (ii) effects of glacial‐interglacial variability, and (iii) the prevalence of subglacial meltwater. The timing and inferred spatial patterns of long‐term exhumation at Bourgeois Fjord are consistent with a hypothesis that glacial erosion processes were suppressed at the AP during global Plio‐Pleistocene cooling, rather than enhanced. Our study examines the long‐term consequences of glacial processes on catchment‐wide erosion as the local climate cooled. Our findings support the hypothesis that landscapes at different latitudes had different responses to global cooling. Our results also suggest that erosion is enhanced along the plateau flanks of Bourgeois Fjord today, which may be due to periglacial processes or mantling via subglacial till. If regional warming persists and meltwater becomes more pronounced, we predict that enhanced erosion along the plateau flank will accelerate topographic change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
