skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Bayesian Analysis of Physical Parameters for 783 Kepler Close Binaries: Extreme-mass-ratio Systems and a New Mass Ratio versus Period Lower Limit
Abstract Contact binary star systems represent the long-lived penultimate phase of binary evolution. Population statistics of their physical parameters inform an understanding of binary evolutionary pathways and end products. We use light curves and new optical spectroscopy to conduct a pilot study of ten (near) contact systems in the long-period (P> 0.5 days) tail of close binaries in the Kepler field. We use PHOEBE light-curve models to compute Bayesian probabilities on five principal system parameters. Mass ratios and third-light contributions measured from spectra agree well with those inferred from the light curves. Pilot study systems have extreme mass ratiosq< 0.32. Most are triples. Analysis of the unbiased sample of 783 0.15 d <P< 2 days (near) contact binaries results in 178 probable contact systems, 114 probable detached systems, and 491 ambiguous systems for which we report best-fitting and 16th-/50th-/84th-percentile parameters. Contact systems are rare at periodsP> 0.5 days, as are systems withq> 0.8. There exists an empirical mass ratio lower limit q min ( P ) ≈ 0.05–0.15 below which contact systems are absent, supporting a new set of theoretical predictions obtained by modeling the evolution of contact systems under the constraints of mass and angular momentum conservation. Premerger systems should lie at long periods and near this mass ratio lower limit, which rises fromq= 0.044 forP= 0.74 days toq= 0.15 atP= 2.0 days. These findings support a scenario whereby nuclear evolution of the primary (more massive) star drives mass transfer to the primary, thus moving systems toward extremeqand largerPuntil the onset of the Darwin instability at q min precipitates a merger.  more » « less
Award ID(s):
1716622
PAR ID:
10369801
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
262
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 12
Size(s):
Article No. 12
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The merger of two galaxies, each hosting a supermassive black hole (SMBH) of mass 106Mor more, could yield a bound SMBH binary. For the early-type galaxy NGC 4472, we study how astrometry with a next-generation Very Large Array could be used to monitor the reflex motion of the primary SMBH of massMpri, as it is tugged on by the secondary SMBH of mass M sec . Casting the orbit of the putative SMBH binary in terms of its periodP, semimajor axisabin, and mass ratio q = M sec / M pri 1 , we find the following: (1) Orbits with fiducial periods ofP= 4 yr and 40 yr could be spatially resolved and monitored. (2) For a 95% accuracy of 2μas per monitoring epoch, subparsec values ofabincould be accessed over a range of mass ratios notionally encompassing major q > 1 4 and minor q < 1 4 galaxy mergers. (3) If no reflex motion is detected forMpriafter 1 (10) yr of monitoring, an SMBH binary with periodP= 4 (40) yr and mass ratioq> 0.01 (0.003) could be excluded. This would suggest no present-day evidence for a past major merger like that recently simulated, where scouring by aq∼ 1 SMBH binary formed a stellar core with kinematic traits like those of NGC 4472. (4) Astrometric monitoring could independently check the upper limits onqfrom searches for continuous gravitational waves from NGC 4472. 
    more » « less
  2. Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient log 10 ( f mean , σ ) and black-hole mass, (ii) marginal evidence for a similar correlation between log 10 ( f rms , σ ) and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with log 10 ( f mean , FWHM ) and log 10 ( f rms , FWHM ) , and (iv) marginal evidence for an anticorrelation of inclination angle with log 10 ( f mean , FWHM ) , log 10 ( f rms , σ ) , and log 10 ( f mean , σ ) . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, log 10 ( FWHM / σ ) rms , and the virial coefficient, log 10 ( f rms , σ ) , and investigate how BLR properties might be related to line-profile shape usingcaramelmodels. 
    more » « less
  3. Abstract The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastable H ( 3 Δ 1 ) state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-lived Q ( 3 Δ 2 ) state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to the C ( 1 Π 1 ) state, which allows for efficient population transfer between the ground state X ( 1 Σ + ) and theQstate via X C Q Stimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, the X C transition dipole moment, and branching ratios of decays from theCstate. 
    more » « less
  4. Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio 12 / 13 I [ 12 CO ( J = 1 0 ) ] / I [ 13 CO ( J = 1 0 ) ] and the properties of the stars and ionized gas. Higher 12 / 13 values are found in interacting galaxies compared to those in noninteracting galaxies. The global 12 / 13 slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged 12 / 13 profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of 12 / 13 are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged 12 / 13 increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged 12 / 13 does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, 12 / 13 is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on 12 / 13 , which further complicates the interpretations of 12 / 13 variations. 
    more » « less
  5. Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum f 0 ( , p ) with the Green’s function G ( r , p ; p ) , which describes the monoenergetic spectrum solution in which f 0 δ ( p p ) asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for G ( r , p ; p ) . In this paper, we explore for the first time, solutions for more general and realistic forms for f 0 ( , p ) . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time τ ( r , p ) = τ 0 ( p / p 0 ) α in the shear flow region 0 <r<r2, and τ ( r , p ) = τ 0 ( p / p 0 ) α ( r / r 2 ) s , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution ψ p ( r , p ; p ) that particles observed at (r,p) originated fromr→ ∞ with momentum p . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. 
    more » « less