Abstract AimsBryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes. Study SiteSpruce–fir forests on Whiteface Mountain, NY,USA. MethodsWe characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression. ResultsCanopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients. ConclusionsThe observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities.
more »
« less
Characterizing Canopy Openness Across Large Forested Landscapes Using Spherical Densiometer and Smartphone Hemispherical Photography
Abstract Canopy openness is an important forest characteristic related to understory light environment and productivity. Although many methods exist to estimate canopy openness, comparisons of their performance tend to focus on relatively narrow ranges of canopy conditions and forest types. To address this gap, we compared two popular approaches for estimating canopy openness, traditional spherical densiometer and modern smartphone hemispherical photography, across a large range of canopy conditions (from closed canopy to large gaps) and forest types (from low-elevation broadleaf to high-elevation conifer forests) across four states in the northeastern United States. We took 988 field canopy openness measurements (494 per instrument) and compared them across canopy conditions using linear regression and t-tests. The extensive replication allowed us to quantify differences between the methods that may otherwise go unnoticed. Relative to the densiometer, smartphone photography overestimated low canopy openness (<10%) but it underestimated higher canopy openness (>10%), regardless of forest type.
more »
« less
- Award ID(s):
- 1759724
- PAR ID:
- 10369864
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Forestry
- Volume:
- 120
- Issue:
- 1
- ISSN:
- 0022-1201
- Format(s):
- Medium: X Size: p. 37-50
- Size(s):
- p. 37-50
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Accurate measurements of terrain elevation are crucial for many ecological applications. In this study, we sought to assess new global three-dimensional Earth observation data acquired by the spaceborne Light Detection and Ranging (LiDAR) missions Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI). For this, we examined the “ATLAS/ICESat-2 L3A Land and Vegetation Height”, version 5 (20 × 14 m and 100 × 14 m segments) and the “GEDI Level 2A Footprint Elevation and Height Metrics”, version 2 (25 m circle). We conducted our analysis across four land cover classes (bare soil, herbaceous, forest, savanna), and six forest types (temperate broad-leaved, temperate needle-leaved, temperate mixed, tropical upland, tropical floodplain, and tropical secondary forest). For assessment of terrain elevation estimates from spaceborne LiDAR data we used high resolution airborne data. Our results indicate that both LiDAR missions provide accurate terrain elevation estimates across different land cover classes and forest types with mean error less than 1 m, except in tropical forests. However, using a GEDI algorithm with a lower signal end threshold (e.g., algorithm 5) can improve the accuracy of terrain elevation estimates for tropical upland forests. Specific environmental parameters (terrain slope, canopy height and canopy cover) and sensor parameters (GEDI degrade flags, terrain estimation algorithm; ICESat-2 number of terrain photons, terrain uncertainty) can be applied to improve the accuracy of ICESat-2 and GEDI-based terrain estimates. Although the goodness-of-fit statistics from the two spaceborne LiDARs are not directly comparable since they possess different footprint sizes (100 × 14 m segment or 20 × 14 m segment vs. 25 m circle), we observed similar trends on the impact of terrain slope, canopy cover and canopy height for both sensors. Terrain slope strongly impacts the accuracy of both ICESat-2 and GEDI terrain elevation estimates for both forested and non-forested areas. In the case of GEDI the impact of slope is, however, partly caused by horizontal geolocation error. Moreover, dense canopies (i.e., canopy cover higher than 90%) affect the accuracy of spaceborne LiDAR terrain estimates, while canopy height does not, when considering samples over flat terrains. Our analysis of the accuracy and precision of current versions of spaceborne LiDAR products for different vegetation types and environmental conditions provides insights on parameter selection and estimated uncertainty to inform users of these key global datasets.more » « less
-
Abstract How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high‐elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high‐elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.more » « less
-
Abstract Moderate severity disturbances, those that do not result in stand replacement, play an essential role in ecosystem dynamics. Despite the prevalence of moderate severity disturbances and the significant impacts they impose on forest functioning, little is known about their effects on forest canopy structure and how these effects differ over time across a range of disturbance severities and disturbance types.Using longitudinal data from the National Ecological Observatory Network project, we assessed the effects of three moderate severity press disturbances (beech bark disease, hemlock woolly adelgid and emerald ash borer, which are characterized by continuous disturbance and sustained mortality) and three moderate severity pulse disturbances (spring cankerworm moth, spongy moth and ground fire, which are associated with discrete and relatively short mortalities) on temperate forest canopy structure in eastern US. We studied (1) how light detection and ranging (LiDAR)‐derived metrics of canopy structure change in response to disturbance and (2) whether initial canopy complexity offsets impact of disturbances on canopy structure over time. We used a mixed‐effects modelling framework which included a non‐linear term for time to represent changes in canopy structure caused by disturbance, and interactions between time and both disturbance intensity and initial canopy complexity.We discovered that high intensity of both press and pulse disturbances inhibited canopy height growth while low intensity pulse disturbances facilitated it. In addition, high intensity pulse disturbances facilitated increases in the complexity of the canopy over time. Concerning the impact of initial canopy complexity, we found that the initial canopy complexity of disturbed plots altered the effects of moderate disturbances, indicating potential resilience effects.Synthesis. This study used repeated measurements of LiDAR data to examine the effects of moderate disturbances on various dimensions of forest canopy structure, including height, openness, density and complexity. Our study indicates that both press and pulse disturbances can inhibit canopy height growth over time. However, while the impact of press disturbances on other dimensions of canopy structure could not be clearly detected, likely because of compensatory growth, the impact of pulse disturbances over time was more readily apparent using multi‐temporal LiDAR data. Furthermore, our findings suggest that canopy complexity might help to mitigate the impact of moderate disturbances on canopy structures over time. Overall, our research highlights the usefulness of multi‐temporal LiDAR data for assessing the structural changes in forest canopies caused by moderate severity disturbances.more » « less
-
Abstract Vegetation structural complexity and biodiversity tend to be positively correlated, but understanding of this relationship is limited in part by structural metrics tending to quantify only horizontal or vertical variation, and that do not reflect internal structure. We developed new metrics for quantifying internal vegetation structural complexity using terrestrial LiDAR scanning and applied them to 12 NEON forest plots across an elevational gradient in Great Smoky Mountains National Park, USA. We asked (1) How do our newly developed structure metrics compare to traditional metrics? (2) How does forest structure vary with elevation in a high‐biodiversity, high topographic complexity region? (3) How do forest structural metrics vary in the strength of their relationships with vascular plant biodiversity? Our new measures of canopy density (Depth) and structural complexity (σDepth), and their canopy height‐normalized counterparts, were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Forest structure varied widely across plots spanning the elevational range of GRSM, with taller, more structurally complex forests at lower elevation. Vascular plant biodiversity was negatively correlated with elevation and more strongly positively correlated with vegetation structure variables. The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms.more » « less
An official website of the United States government
