The Andean and Atlantic forests are separated by the open vegetation corridor, which acts as a geographic barrier. However, these forests experienced cycles of connection and isolation in the past, which shaped the phylogeographic patterns of their biotas. We analysed the evolutionary history of the rufous‐capped antshrikeThamnophilus ruficapillus, a species with a disjunct distribution in the Atlantic and Andean forests and thus an appropriate model to study the effect of the open vegetation corridor and the Andes on the diversification of the Neotropical avifauna. We performed a phylogenetic/phylogeographic analysis, including the five subspecies, using mitochondrial and nuclear genomic DNA, and studied their differences in vocalizations and plumage coloration. Both the mitochondrial and nuclear DNA evidenced a marked phylogeographic structure with three differentiated lineages that diverged without signs of gene flow in the Pleistocene (1.0–1.7 million years ago): one in the Atlantic Forest and two in the Andean forest. However, the two Andean lineages do not coincide with the two disjunct areas of distribution of the species in the Andes. Vocalizations were significantly different between most subspecies, but their pattern of differentiation was discordant with that of the nuclear and mitochondrial DNA. In fact, we did not find song differentiation between the subspecies of the Atlantic Forest and that of the northwestern Bolivian Andes, even though they differ genetically and belong to different lineages. Consistently, no differences were found in plumage coloration between the subspecies of the Atlantic Forest and that of the southern Andes. Our results suggest a complex evolutionary history in this species, which differentiated both due to dispersion across the open vegetation corridor, likely during a period of connection between the Andean and Atlantic forests, and the effect of the Bolivian Altiplano as a geographic barrier. In both cases, Pleistocene climatic oscillations appear to have influenced the species diversification.
more »
« less
Empirical and philosophical problems with the subspecies rank
Abstract Species‐level taxonomy derives from empirical sources (data and techniques) that assess the existence of spatiotemporal evolutionary lineages via various species “concepts.” These concepts determine if observed lineages are independent given a particular methodology and ontology, which relates the metaphysical species concept to what “kind” of thing a species is in reality. Often, species concepts fail to link epistemology back to ontology. This lack of coherence is in part responsible for the persistence of the subspecies rank, which in modern usage often functions as a placeholder between the evolutionary events of divergence or collapse of incipient species. Thus, prospective events like lineages merging or diverging require information from unknowable future information. This is also conditioned on evidence that the lineage already has a detectably distinct evolutionary history. Ranking these lineages as subspecies can seem attractive given that many lineages do not exhibit intrinsic reproductive isolation. We argue that using subspecies is indefensible on philosophical and empirical grounds. Ontologically, the rank of subspecies is either identical to that of species or undefined in the context of evolutionary lineages representing spatiotemporally defined individuals. Some species concepts more inclined to consider subspecies, like the Biological Species Concept, are disconnected from evolutionary ontology and do not consider genealogy. Even if ontology is ignored, methods addressing reproductive isolation are often indirect and fail to capture the range of scenarios linking gene flow to species identity over space and time. The use of subspecies and reliance on reproductive isolation as a basis for an operational species concept can also conflict with ethical issues governing the protection of species. We provide a way forward for recognizing and naming species that links theoretical and operational species concepts regardless of the magnitude of reproductive isolation.
more »
« less
- Award ID(s):
- 2224119
- PAR ID:
- 10370041
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Meegaskumbura, Madhava (Ed.)The sub-montane East African Reed Frog,Hyperolius substriatusAhl, 1931 (Spotted Reed Frog) has a fragmented highland distribution throughout East Africa. Previous studies show extensive mitochondrial divergence between four lineages of African Spotted Reed Frogs that roughly correspond to previously-recognized subspecies. These may have conservation implications if formally described. However, as mitochondrial-based population models only track maternal patterns, further genomic datasets are necessary to assess the distinctness of these lineages in relation to historically recognized morphological subspecies. In this study, we expanded sampling to newly discovered localities and assessed mitochondrial and genomic data to better understand phylogeography and landscape genomics of this species. We found that genomic clades (biparentally inherited) confirm some of the mitochondrial structure (female inherited), but also revealed multiple cases of mitonuclear discordance particularly within the Udzungwa Mountain block, which may have two separate founding events based on peripatric mitochondrial lineages and panmictic genomic signals. Taken together, the three clades within the geographical range ofH. substriatusthrough Tanzania, Malawi, and Mozambique correspond to three previously-identified subspecies and lineages, and have both spatially cohesive and population-specific patterns of geneflow and isolation with neighboring highland locations.more » « less
-
Abstract The evolutionary implications and frequency of hybridization and introgression are increasingly being recognized across the tree of life. To detect hybridization from multi-locus and genome-wide sequence data, a popular class of methods are based on summary statistics from subsets of 3 or 4 taxa. However, these methods often carry the assumption of a constant substitution rate across lineages and genes, which is commonly violated in many groups. In this work, we quantify the effects of rate variation on the D test (also known as ABBA–BABA test), the D3 test, and HyDe. All 3 tests are used widely across a range of taxonomic groups, in part because they are very fast to compute. We consider rate variation across species lineages, across genes, their lineage-by-gene interaction, and rate variation across gene-tree edges. We simulated species networks according to a birth–death-hybridization process, so as to capture a range of realistic species phylogenies. For all 3 methods tested, we found a marked increase in the false discovery of reticulation (type-1 error rate) when there is rate variation across species lineages. The D3 test was the most sensitive, with around 80% type-1 error, such that D3 appears to more sensitive to a departure from the clock than to the presence of reticulation. For all 3 tests, the power to detect hybridization events decreased as the number of hybridization events increased, indicating that multiple hybridization events can obscure one another if they occur within a small subset of taxa. Our study highlights the need to consider rate variation when using site-based summary statistics, and points to the advantages of methods that do not require assumptions on evolutionary rates across lineages or across genes.more » « less
-
Abstract Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent “parts”, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge—in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.]more » « less
-
Abstract The outcomes of speciation across organismal dimensions (e.g., ecological, genetic, phenotypic) are often assessed using phylogeographic methods. At one extreme, reproductively isolated lineages represent easily delimitable species differing in many or all dimensions, and at the other, geographically distinct genetic segments introgress across broad environmental gradients with limited phenotypic disparity. In the ambiguous gray zone of speciation, where lineages are genetically delimitable but still interacting ecologically, it is expected that these lineages represent species in the context of ontology and the evolutionary species concept when they are maintained over time with geographically well‐defined hybrid zones, particularly at the intersection of distinct environments. As a result, genetic structure is correlated with environmental differences and not space alone, and a subset of genes fail to introgress across these zones as underlying genomic differences accumulate. We present a set of tests that synthesize species delimitation with the speciation process. We can thereby assess historical demographics and diversification processes while understanding how lineages are maintained through space and time by exploring spatial and genome clines, genotype‐environment interactions, and genome scans for selected loci. Employing these tests in eight lineage‐pairs of snakes in North America, we show that six pairs represent 12 “good” species and that two pairs represent local adaptation and regional population structure. The distinct species pairs all have the signature of divergence before or near the mid‐Pleistocene, often with low migration, stable hybrid zones of varying size, and a subset of loci showing selection on alleles at the hybrid zone corresponding to transitions between distinct ecoregions. Locally adapted populations are younger, exhibit higher migration, and less ecological differentiation. Our results demonstrate that interacting lineages can be delimited using phylogeographic and population genetic methods that properly integrate spatial, temporal, and environmental data.more » « less
An official website of the United States government
