Abstract One of the major challenges in evaluating the suitability of potential ∼700 E3 ligases for target protein degradation (TPD) is the lack of binders specific to each E3 ligase. Here we apply genetic code expansion (GCE) to encode a tetrazine-containing non-canonical amino acid (Tet-ncAA) site-specifically into the E3 ligase, which can be conjugated with strained trans-cyclooctene (sTCO) tethered to a neo-substrate protein binder by click chemistry within living cells. The resulting E3 ligase minimally modified and functionalized in an E3-ligand free (ELF) manner, can be evaluated for TPD of the neo-substrate. We demonstrate that CRBN encoded with clickable Tet-ncAA, either in the known immunomodulatory drug (IMiD)-binding pocket or across surface, can be covalently tethered to sTCO-linker-JQ1 and recruit BRD2/4 for CRBN mediated degradation, indicating the high plasticity of CRBN for TPD. The degradation efficiency is dependent on location of the Tet-ncAA encoding on CRBN as well as the length of the linker, showing the capability of this approach to map the surface of E3 ligase for identifying optimal TPD pockets. This ELF-degrader approach has the advantages of not only maintaining the native state of E3 ligase, but also allowing the interrogation of E3 ligases and target protein partners under intracellular conditions and can be applied to any known E3 ligase.
more »
« less
Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry
Abstract Targeted protein degradation (TPD) is a promising approach in drug discovery for degrading proteins implicated in diseases. A key step in this process is the formation of a ternary complex where a heterobifunctional molecule induces proximity of an E3 ligase to a protein of interest (POI), thus facilitating ubiquitin transfer to the POI. In this work, we characterize 3 steps in the TPD process. (1) We simulate the ternary complex formation of SMARCA2 bromodomain and VHL E3 ligase by combining hydrogen-deuterium exchange mass spectrometry with weighted ensemble molecular dynamics (MD). (2) We characterize the conformational heterogeneity of the ternary complex using Hamiltonian replica exchange simulations and small-angle X-ray scattering. (3) We assess the ubiquitination of the POI in the context of the full Cullin-RING Ligase, confirming experimental ubiquitinomics results. Differences in degradation efficiency can be explained by the proximity of lysine residues on the POI relative to ubiquitin.
more »
« less
- Award ID(s):
- 1761320
- PAR ID:
- 10370111
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Targeted protein degradation (TPD) is a powerful strategy for targeting and eliminating disease-causing proteins. While heterobifunctional Proteolysis-Targeting Chimeras (PROTACs) are more modular, the rational design of monovalent or molecular glue degraders remains challenging. In this study, we generated a small library of BET-domain inhibitor JQ1 analogs bearing elaborated electrophilic handles to identify permissive covalent degradative handles and E3 ligase pairs. We identified an elaborated fumaramide handle that, when appended onto JQ1, led to the proteasome-dependent degradation of BRD4. Further characterization revealed that the E3 ubiquitin ligase CUL4DCAF16—a common E3 ligase target of electrophilic degraders—was responsible for BRD4 loss by covalently targeting C173 on DCAF16. While this original fumaramide handle, when appended onto other protein-targeting ligands, did not accommodate the degradation of other neo-substrates, a truncated version of this handle attached to JQ1 was still capable of degrading BRD4, now through targeting both C173 and C178. This truncated fumaramide handle, when appended on various protein targeting ligands, and was also more permissive in degrading other neo-substrates, including CDK4/6, SMARCA2/4, and the androgen receptor (AR). We further demonstrated that this optimized truncated fumaramide handle, when transplanted onto an AR DNA binding domain-targeting ligand, could degrade both AR and the undruggable truncation variant of AR, AR-V7, in androgen-independent prostate cancer cells in a DCAF16-dependent manner. Overall, we have identified a unique DCAF16-targeting covalent degradative handle that can be transplanted across several protein-targeting ligands to induce the degradation of their respective targets for the modular design of monovalent or bifunctional degraders.more » « less
-
Inducible protein degradation systems are an important but untapped resource for the study of protein function in plant cells. Unlike mutagenesis or transcriptional control, regulated degradation of proteins of interest allows the study of the biological mechanisms of highly dynamic cellular processes involving essential proteins. While systems for targeted protein degradation are available for research and therapeutics in animals, there are currently limited options in plant biology. Targeted protein degradation systems rely on target ubiquitination by E3 ubiquitin ligases. Systems that are available or being developed in plants can be distinguished primarily by the type of E3 ubiquitin ligase involved, including those that utilize Cullin-RING ligases, bacterial novel E3 ligases, and N-end rule pathway E3 ligases, or they can be controlled by proteolysis targeting chimeras. Target protein ubiquitination leads to degradation by the proteasome or targeting to the vacuole, with both pathways being ubiquitous and important for the endogenous control of protein abundance in plants. Targeted proteolysis approaches for plants will likely be an important tool for basic research and to yield novel traits for crop biotechnology.more » « less
-
Abstract Protein ubiquitylation is a post-translational modification (PTM) process that covalently modifies a protein substrate with either mono-ubiquitin moieties or poly-ubiquitin chains often at the lysine residues. In Arabidopsis, bioinformatic predictions have suggested that over 5% of its proteome constitutes the protein ubiquitylation system. Despite advancements in functional genomic studies in plants, only a small fraction of this bioinformatically predicted system has been functionally characterized. To expand our understanding about the regulatory function of protein ubiquitylation to that rivalling several other major systems, such as transcription regulation and epigenetics, I describe the status, issues, and new approaches of protein ubiquitylation studies in plant biology. I summarize the methods utilized in defining the ubiquitylation machinery by bioinformatics, identifying ubiquitylation substrates by proteomics, and characterizing the ubiquitin E3 ligase-substrate pathways by functional genomics. Based on the functional and evolutionary analyses of the F-box gene superfamily, I propose a deleterious duplication model for the large expansion of this family in plant genomes. Given this model, I present new perspectives of future functional genomic studies on the plant ubiquitylation system to focus on core and active groups of ubiquitin E3 ligase genes.more » « less
An official website of the United States government

