skip to main content

Title: Intracluster Magnetic Filaments and an Encounter with a Radio Jet
Abstract

Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields, more » and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.

« less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1714205
Publication Date:
NSF-PAR ID:
10370268
Journal Name:
The Astrophysical Journal
Volume:
935
Issue:
2
Page Range or eLocation-ID:
Article No. 168
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$ -steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m −2 within 1 $^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be amore »singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.« less
  2. The presence of relativistic electrons within the diffuse gas phase of galaxy clusters is now well established, thanks to deep radio observations obtained over the last decade, but their detailed origin remains unclear. Cosmic ray protons are also expected to accumulate during the formation of clusters. They may explain part of the radio signal and would lead to γ -ray emission through hadronic interactions within the thermal gas. Recently, the detection of γ -ray emission has been reported toward the Coma cluster with Fermi -LAT. Assuming that this γ -ray emission arises essentially from pion decay produced in proton-proton collisions within the intracluster medium (ICM), we aim at exploring the implication of this signal on the cosmic ray content of the Coma cluster and comparing it to observations at other wavelengths. We use the MINOT software to build a physical model of the Coma cluster, which includes the thermal target gas, the magnetic field strength, and the cosmic rays, to compute the corresponding expected γ -ray signal. We apply this model to the Fermi -LAT data using a binned likelihood approach, together with constraints from X-ray and Sunyaev-Zel’dovich observations. We also consider contamination from compact sources and the impact ofmore »various systematic effects on the results. We confirm that a significant γ -ray signal is observed within the characteristic radius θ 500 of the Coma cluster, with a test statistic TS ≃ 27 for our baseline model. The presence of a possible point source (4FGL J1256.9+2736) may account for most of the observed signal. However, this source could also correspond to the peak of the diffuse emission of the cluster itself as it is strongly degenerate with the expected ICM emission, and extended models match the data better. Given the Fermi -LAT angular resolution and the faintness of the signal, it is not possible to strongly constrain the shape of the cosmic ray proton spatial distribution when assuming an ICM origin of the signal, but preference is found in a relatively flat distribution elongated toward the southwest, which, based on data at other wavelengths, matches the spatial distribution of the other cluster components well. Assuming that the whole γ -ray signal is associated with hadronic interactions in the ICM, we constrain the cosmic ray to thermal energy ratio within R 500 to X CRp = 1.79 −0.30 +1.11 % and the slope of the energy spectrum of cosmic rays to α = 2.80 −0.13 +0.67 ( X CRp = 1.06 −0.22 +0.96 % and α = 2.58 −0.09 +1.12 when including both the cluster and 4FGL J1256.9+2736 in our model). Finally, we compute the synchrotron emission associated with the secondary electrons produced in hadronic interactions assuming steady state. This emission is about four times lower than the overall observed radio signal (six times lower when including 4FGL J1256.9+2736), so that primary cosmic ray electrons or reacceleration of secondary electrons is necessary to explain the total emission. We constrain the amplitude of the primary to secondary electrons, or the required boost from reacceleration with respect to the steady state hadronic case, depending on the scenario, as a function of radius. Our results confirm that γ -ray emission is detected in the direction of the Coma cluster. Assuming that the emission is due to hadronic interactions in the intracluster gas, they provide the first quantitative measurement of the cosmic ray proton content in a galaxy cluster and its implication for the cosmic ray electron populations.« less
  3. We present wideband (1 − 6.5 GHz) polarimetric observations, obtained with the Karl G. Jansky Very Large Array, of the merging galaxy cluster MACS J0717.5+3745, which hosts one of the most complex known radio relic and halo systems. We used both rotation measure synthesis and QU -fitting to find a reasonable agreement of the results obtained with these methods, particularly when the Faraday distribution is simple and the depolarization is mild. The relic is highly polarized over its entire length (850 kpc), reaching a fractional polarization > 30% in some regions. We also observe a strong wavelength-dependent depolarization for some regions of the relic. The northern part of the relic shows a complex Faraday distribution, suggesting that this region is located in or behind the intracluster medium (ICM). Conversely, the southern part of the relic shows a rotation measure very close to the Galactic foreground, with a rather low Faraday dispersion, indicating very little magnetoionic material intervening along the line of sight. Based on a spatially resolved polarization analysis, we find that the scatter of Faraday depths is correlated with the depolarization, indicating that the tangled magnetic field in the ICM causes the depolarization. We conclude that the ICM magneticmore »field could be highly turbulent. At the position of a well known narrow-angle-tailed galaxy (NAT), we find evidence of two components that are clearly separated in the Faraday space. The high Faraday dispersion component seems to be associated with the NAT, suggesting the NAT is embedded in the ICM while the southern part of the relic lies in front of it. If true, this implies that the relic and this radio galaxy are not necessarily physically connected and, thus, the relic may, in fact, not be powered by the shock re-acceleration of fossil electrons from the NAT. The magnetic field orientation follows the relic structure indicating a well-ordered magnetic field. We also detected polarized emission in the halo region; however, the absence of significant Faraday rotation and a low value of Faraday dispersion suggests the polarized emission that was previously considered as the part of the halo does, in fact, originate from the shock(s).« less
  4. Context. During their lifetimes, galaxy clusters grow through the accretion of matter from the filaments of the large-scale structure and from mergers with other clusters. These mergers release a large amount of energy into the intracluster medium (ICM) through merger shocks and turbulence. These phenomena are associated with the formation of radio sources known as radio relics and radio halos, respectively. Radio relics and halos are unique proxies for studying the complex properties of these dynamically active regions of clusters and the microphysics of the ICM more generally. Aims. Abell 3667 is a spectacular example of a merging system that hosts a large pair of radio relics. Due to its proximity ( z  = 0.0553) and large mass, the system enables the study of these sources to a uniquely high level of detail. However, being located at Dec = −56.8°, the cluster could only be observed with a limited number of radio facilities. Methods. We observed Abell 3667 with MeerKAT as part of the MeerKAT Galaxy Cluster Legacy Survey. We used these data to study the large-scale emission of the cluster, including its polarisation and spectral properties. The results were then compared with simulations. Results. We present the most detailed viewmore »of the radio relic system in Abell 3667 to date, with a resolution reaching 3 kpc. The relics are filled with a network of filaments with different spectral and polarisation properties that are likely associated with multiple regions of particle acceleration and local enhancements of the magnetic field. Conversely, the magnetic field in the space between filaments has strengths close to what would be expected in unperturbed regions at the same cluster-centric distance. Comparisons with magnetohydrodynamic cosmological and Lagrangian simulations support the idea of filaments as multiple acceleration sites. Our observations also confirm the presence of an elongated radio halo, developed in the wake of the bullet-like sub-cluster that merged from the south-east. Finally, we associate the process of magnetic draping with a thin polarised radio source surrounding the remnant of the bullet’s cool core. Conclusions. Our observations have unveiled the complexity of the interplay between the thermal and non-thermal components in the most active regions of a merging cluster. Both the intricate internal structure of radio relics and the direct detection of magnetic draping around the merging bullet are powerful examples of the non-trivial magnetic properties of the ICM. Thanks to its sensitivity to polarised radiation, MeerKAT will be transformational in the study of these complex phenomena.« less
  5. ABSTRACT

    We present a combined radio/X-ray study of six massive galaxy clusters, aimed at determining the potential for heating of the intra-cluster medium (ICM) by non-central radio galaxies. Since X-ray cavities associated with the radio lobes of non-central galaxies are generally not detectable, we use Giant Metrewave Radio Telescope 610 MHz observations to identify jet sources and estimate their size, and Chandra data to estimate the pressure of the surrounding ICM. In the radio, we detect 4.5 per cent of galaxies above the spectroscopic survey limit (M$^{*}_{K}$ + 2.0) of the Arizona cluster redshift survey (ACReS) that covers five of our six clusters. Approximately one-tenth of these are extended radio sources. Using star formation (SF) rates determined from mid-infrared data, we estimate the expected contribution to radio luminosity from the stellar population of each galaxy, and find that most of the unresolved or poorly resolved radio sources are likely SF dominated. The relatively low frequency and good spatial resolution of our radio data allows us to trace SF emission down to galaxies of stellar mass ∼10 9.5 M⊙. We estimate the enthalpy of the (AGN-dominated) jet/lobe and tailed sources, and place limits on the energy available from unresolved radio jets. We find jet powers inmore »the range ∼1043 to 1046 erg s−1, comparable to those of brightest cluster galaxies. Our results suggest that while cluster-central sources are the dominant factor balancing ICM cooling over the long-term, non-central sources may have a significant impact, and that further investigation is possible and warranted.

    « less