skip to main content


Title: Effect of Filler Aspect Ratio on Stiffness and Conductivity in Phase‐Changing Particulate Composites
Abstract

Variable stiffness in elastomers can be achieved through the introduction of low melting point alloy particles, such as Field's metal (FM), enabling on‐demand switchable elasticity and anisotropy in response to thermal stimulus. Because the FM particles are thermally transitioned between solid and liquid phases, it is beneficial for the composite to be electrically conductive so the stiffness may be controlled via direct Joule heating. While FM is highly conductive, spherical particles contribute to a high percolation threshold. In this paper, it is shown that the percolation threshold of FM particulate composites can be reduced with increasing particles aspect ratio. Increasing the aspect ratio of phase‐changing fillers also increases the rigid‐to‐soft modulus ratio of the composite by raising the elastic modulus in the rigid state while preserving the low modulus in the soft state. The results indicate that lower quantities of high aspect ratio FM particles can be used to achieve both electrical conductivity and stiffness‐switching via a single solution and without introducing additional conductive fillers. This technique is applied to enable a highly stretchable, variable stiffness, and electrically conductive composite, which, when patterned around an inflatable actuator, allows for adaptable trajectories via selective softening of the surface materials.

 
more » « less
Award ID(s):
1830870
NSF-PAR ID:
10370365
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
7
Issue:
5
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106. The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating. 
    more » « less
  2. Abstract

    Polymer composite films containing fillers comprising quasi‐1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to106. The polymer composites with low loadings of quasi‐1D TaSe3fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X‐band GHz and extremely high frequency sub‐THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high‐aspect‐ratio electrically conductive TaSe3atomic‐thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high‐frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.

     
    more » « less
  3. Abstract

    Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle‐like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high‐power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response.

     
    more » « less
  4. Abstract

    The thermal properties of epoxy‐based binary composites comprised of graphene and copper nanoparticles are reported. It is found that the “synergistic” filler effect, revealed as a strong enhancement of the thermal conductivity of composites with the size‐dissimilar fillers, has a well‐defined filler loading threshold. The thermal conductivity of composites with a moderate graphene concentration offg= 15 wt% exhibits an abrupt increase as the loading of copper nanoparticles approachesfCu≈ 40 wt%, followed by saturation. The effect is attributed to intercalation of spherical copper nanoparticles between the large graphene flakes, resulting in formation of the highly thermally conductive percolation network. In contrast, in composites with a high graphene concentration,fg= 40 wt%, the thermal conductivity increases linearly with addition of copper nanoparticles. A thermal conductivity of 13.5 ± 1.6 Wm−1K−1is achieved in composites with binary fillers offg= 40 wt% andfCu= 35 wt%. It has also been demonstrated that the thermal percolation can occur prior to electrical percolation even in composites with electrically conductive fillers. The obtained results shed light on the interaction between graphene fillers and copper nanoparticles in the composites and demonstrate potential of such hybrid epoxy composites for practical applications in thermal interface materials and adhesives.

     
    more » « less
  5.  
    more » « less