skip to main content


Title: Effects of Weather on Iowa Nitrogen Export Estimated by Simulation-Based Decomposition
The state of Iowa is known for its high-yield agriculture, supporting rising demands for food and fuel production. But this productivity is also a significant contributor of nitrogen loading to the Mississippi River basin causing the hypoxic zone in the Gulf of Mexico. The delivery of nutrients, especially nitrogen, from the upper Mississippi River basin, is a function, not only of agricultural activity, but also of hydrology. Thus, it is important to consider extreme weather conditions, such as drought and flooding, and understand the effects of weather variability on Iowa’s food-energy-water (IFEW) system and nitrogen loading to the Mississippi River from Iowa. In this work, the simulation decomposition approach is implemented using the extended IFEW model with a crop-weather model to better understand the cause-and-effect relationships of weather parameters on the nitrogen export from the state of Iowa. July temperature and precipitation are used as varying input weather parameters with normal and log normal distributions, respectively, and subdivided to generate regular and dry weather conditions. It is observed that most variation in the soil nitrogen surplus lies in the regular condition, while the dry condition produces the highest soil nitrogen surplus for the state of Iowa.  more » « less
Award ID(s):
1739551
NSF-PAR ID:
10370528
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
14
Issue:
3
ISSN:
2071-1050
Page Range / eLocation ID:
1060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null ; null ; null ; null ; null (Ed.)
    The Midwest state of Iowa in the US is one of the major producers of corn, soybean, ethanol, and animal products, and has long been known as a significant contributor of nitrogen loads to the Mississippi river basin, supplying the nutrient-rich water to the Gulf of Mexico. Nitrogen is the principal contributor to the formation of the hypoxic zone in the northern Gulf of Mexico with a significant detrimental environmental impact. Agriculture, animal agriculture, and ethanol production are deeply connected to Iowa’s economy. Thus, with increasing ethanol production, high yield agriculture practices, growing animal agriculture, and the related economy, there is a need to understand the interrelationship of Iowa’s food-energy-water system to alleviate its impact on the environment and economy through improved policy and decision making. In this work, the Iowa food-energy-water (IFEW) system model is proposed that describes its interrelationship. Further, a macro-scale nitrogen export model of the agriculture and animal agriculture systems is developed. Global sensitivity analysis of the nitrogen export model reveals that the commercial nitrogen-based fertilizer application rate for corn production and corn yield are the two most influential factors affecting the surplus nitrogen in the soil. 
    more » « less
  2. Abstract

    The Raccoon River Basin is the primary source for drinking water in Iowa's largest city and plays a major role in the Mississippi River Basin's high nutrient exports. Future climate change may have major impacts on the biological, physiological, and agronomic processes imposing a threat to ecosystem services. Efforts to reduce nitrogen (N) loads within this basin have included local litigation and the implementation of the Iowa Nutrient Reduction Strategy, which suggest incorporating bioenergy crops (i.e., miscanthus) within the current corn–soybean landscape to reach a 41% reduction in nitrate loads. This study focuses on simulating N export for historical and future land use scenarios by using an agroecosystem model (Agro‐IBIS) and a hydrology model (THMB) at the 500‐m resolution, similar to the scale of agricultural fields. Model simulations are driven by CMIP5 climate data for historical, mid‐century, and late‐century under the RCP 4.5 and 8.5 warming projections. Using recent crop profit analyses for the state of Iowa, profitability maps were generated and nitrogen leaching thresholds were used to determine where miscanthus should replace corn–soybean area to maximize reductions in N pollution. Our results show that miscanthus inclusion on low profit and high N leaching areas can result in a 4% reduction of N loss under current climate conditions and may reduce N loss by 21%–26% under future climate conditions, implying that water quality has the potential continue to improve under future climate conditions when strategically implemented conservation practices are included in future farm management plans.

     
    more » « less
  3. Abstract

    Human‐induced nitrogen–phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data‐model integration framework to evaluate N and P dynamics and the potential for long‐term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security.

     
    more » « less
  4. Most of the Eurasian steppe grasslands, including the Balagaer River watershed located in north China, have an arid/semiarid climatic, and thus a vulnerable ecohydrologic, condition. The grass growth in such a region is critical to combat negative eco-environmental issues such as land desertification and the subsequent degradation of pasture productivity. How to predict responses of grass growth to climatic variations and human activities (e.g., grazing) is important for the utilization and protection of steppe grasslands. However, the information of such predictions is yet incomplete in existing literature. Taking the Balagaer River watershed as a test bed, this study parameterized a WOFOST (WOrld FOod STudies) simulation model to predict the potential plant growth as influenced by climate and human. The model is calibrated by manually adjusting various eco-physiological parameters, whose initial values were estimated using existing literature, field experiments, and remote sensing techniques. The soil-water parameters (e.g., porosity and saturated hydraulic conductivity) were determined by analyzing least-disturbed soil samples, while the physiological parameters (e.g., assimilation rate) of the dominant vegetation species of Stipa Grandis and Leymus Chinensis were determined by laboratory analyses of grass samples as well as from literature. The grazing frequency and intensity by sheep, horses, and cows were modeled as possible management scenarios. The model was driven by historical climate data recorded in a past half century at a weather station within the watershed. This study firstly expanded the WOFOST’s application to tracing dynamics of steppe grasses, while its results would likely be used to understand the threshold conditions for possibly irreversible degradation of steppe grasslands. In this presentation, we will highlight our successes, challenges, and solutions in parameterizing such a WOFOST model, and show the simulation results. 
    more » « less
  5. Abstract

    The Ohio River Basin (ORB) is responsible for 35% of total nitrate loading to the Gulf of Mexico yet controls on nitrate timing require investigation. We used a set of submersible ultraviolet nitrate analyzers located at 13 stations across the ORB to examine nitrate loading and seasonality. Observed nitrate concentrations ranged from 0.3 to 2.8 mg L−1 N in the Ohio River's mainstem. The Ohio River experiences a greater than fivefold increase in annual nitrate load from the upper basin to the river's junction with the Mississippi River (74–415 Gg year−1). The nitrate load increase corresponds with the greater drainage area, a 50% increase in average annual nitrate concentration, and a shift in land cover across the drainage area from 5% cropland in the upper basin to 19% cropland at the Ohio River's junction with the Mississippi River. Time‐series decomposition of nitrate concentration and nitrate load showed peaks centered in January and June for 85% of subbasin‐year combinations and nitrate lows in summer and fall. Seasonal patterns of the terrestrial system, including winter dormancy, spring planting, and summer and fall growing‐harvest seasons, are suggested to control nitrate timing in the Ohio River as opposed to controls by river discharge and internal cycling. The dormant season from December to March carries 51% of the ORB's nitrate load, and nitrate delivery is high across all subbasins analyzed, regardless of land cover. This season is characterized by soil nitrate leaching likely from mineralization of soil organic matter and release of legacy nitrogen. Nitrate experiences fast transit to the river owing to the ORB's mature karst geology in the south and tile drainage in the northwest. The planting season from April to June carries 26% of the ORB's nitrate and is a period of fertilizer delivery from upland corn and soybean agriculture to streams. The harvest season from July to November carries 22% of the ORB's nitrate and is a time of nitrate retention on the landscape. We discuss nutrient management in the ORB including fertilizer efficiency, cover crops, and nitrate retention using constructed measures.

     
    more » « less