Conventional imaging and recognition systems require an extensive amount of data storage, pre-processing, and chip-to-chip communications as well as aberration-proof light focusing with multiple lenses for recognizing an object from massive optical inputs. This is because separate chips (
- Publication Date:
- NSF-PAR ID:
- 10370561
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »
-
Abstract As machine vision technology generates large amounts of data from sensors, it requires efficient computational systems for visual cognitive processing. Recently, in-sensor computing systems have emerged as a potential solution for reducing unnecessary data transfer and realizing fast and energy-efficient visual cognitive processing. However, they still lack the capability to process stored images directly within the sensor. Here, we demonstrate a heterogeneously integrated 1-photodiode and 1 memristor (1P-1R) crossbar for in-sensor visual cognitive processing, emulating a mammalian image encoding process to extract features from the input images. Unlike other neuromorphic vision processes, the trained weight values are applied as an input voltage to the image-saved crossbar array instead of storing the weight value in the memristors, realizing the in-sensor computing paradigm. We believe the heterogeneously integrated in-sensor computing platform provides an advanced architecture for real-time and data-intensive machine-vision applications via bio-stimulus domain reduction.
-
Fast electrochemical imaging enables the dynamic study of electroactive molecule diffusion in neurotransmitter release from single cells and dopamine mapping in brain slices. In this paper, we discuss the design of an electrochemical imaging sensor using a monolithic CMOS sensor array and a multifunctional data acquisition system. Using post-CMOS fabrication, the CMOS sensor integrates 1024 on-chip electrodes on the surface and contains 1024 low-noise amplifiers to simultaneous process parallel electrochemical recordings. Each electrochemical electrode and amplifier are optimized to operate at 10.38 kHz sampling rate. To support the operation of the high-throughput CMOS device, a multifunctional data acquisition device is developed to provide the required speed and accuracy. The high analog data rate of 10.63 MHz from all 1024 amplifiers is redundantly sampled by the custom-designed data acquisition system which can process up to 73.6 MHz with up to ~400 Mbytes/s data rate to a computer using USB 3.0 interface. To contain the liquid above the electrochemical sensors and prevent electronic and wire damage, we packaged the monolithic sensor using a 3D-printed well. Using the presented device, 32 pixel × 32 pixel electrochemical imaging of dopamine diffusion is successfully demonstrated at over 10,000 frames per second, the fastest reported tomore »
-
The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability.more »
-
We present an on-chip, widefield fluorescence microscope, which consists of a diffuser placed a few millimeters away from a traditional image sensor. The diffuser replaces the optics of a microscope, resulting in a compact and easy-to-assemble system with a practical working distance of over 1.5 mm. Furthermore, the diffuser encodes volumetric information, enabling refocusability in post-processing and three-dimensional (3D) imaging of sparse samples from a single acquisition. Reconstruction of images from the raw data requires a precise model of the system, so we introduce a practical calibration scheme and a physics-based forward model to efficiently account for the spatially-varying point spread function (PSF). To improve performance in low-light, we propose a random microlens diffuser, which consists of many small lenslets randomly placed on the mask surface and yields PSFs that are robust to noise. We build an experimental prototype and demonstrate our system on both planar and 3D samples.