skip to main content

Title: The Dynamic Relationship between Air and Land Surface Temperature within the Madison, Wisconsin Urban Heat Island
The urban heat island (UHI) effect, the phenomenon by which cities are warmer than rural surroundings, is increasingly important in a rapidly urbanizing and warming world, but fine-scale differences in temperature within cities are difficult to observe accurately. Networks of air temperature (Tair) sensors rarely offer the spatial density needed to capture neighborhood-level disparities in warming, while satellite measures of land surface temperature (LST) do not reflect the air temperatures that people physically experience. This analysis combines both Tair measurements recorded by a spatially-dense stationary sensor network in Dane County, Wisconsin, and remotely-sensed measurements of LST over the same area—to improve the use and interpretation of LST in UHI studies. The data analyzed span three summer months (June, July, and August) and eight years (2012–2019). Overall, Tair and LST displayed greater agreement in spatial distribution than in magnitude. The relationship between day of the year and correlation was fit to a parabolic curve (R2 = 0.76, p = 0.0002) that peaked in late July. The seasonal evolution in the relationship between Tair and LST, along with particularly high variability in LST across agricultural land cover suggest that plant phenology contributes to a seasonally varying relationship between Tair and LST measurements more » of the UHI. « less
Award ID(s):
Publication Date:
Journal Name:
Remote Sensing
Sponsoring Org:
National Science Foundation
More Like this
  1. The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal,more »seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling.« less
  2. Abstract Climate change is expected to exacerbate the urban heat island (UHI) effect in cities worldwide, increasing the risk of heat-related morbidity and mortality. Solar reflective ‘cool pavement’ is one of several mitigation strategies that may counteract the negative effects of the UHI effect. An increase in pavement albedo results in less heat absorption, which results in reduced surface temperatures ( T surface ). Near surface air temperatures ( T air ) could also be reduced if cool pavements are deployed at sufficiently large spatial scales, though this has never been confirmed by field measurements. This field study is the first to conduct controlled measurements of the impacts of neighborhood-scale cool pavement installations. We measured the impacts of cool pavement on albedo, T surface , and T air . In addition, pavement albedo was monitored after installation to assess its degradation over time. The field site (∼0.64 km 2 ) was located in Covina, California; ∼30 km east of Downtown Los Angeles. We found that an average pavement albedo increase of 0.18 (from 0.08 to 0.26) corresponded to maximum neighborhood averaged T surface and T air reductions of 5 °C and 0.2 °C, respectively. Maximum T surface reductions were observedmore »in the afternoon, while minimum reductions of 0.9 °C were observed in the morning. T air reductions were detected at 12:00 local standard time (LST), and from 20:00 LST to 22:59 LST, suggesting that cool pavement decreases T air during the daytime as well as in the evening. An average albedo reduction of 30% corresponded to a ∼1 °C reduction in the T surface cooling efficacy. Although we present here the first measured T air reductions due to cool pavement, we emphasize that the tradeoffs between T air reductions and reflected shortwave radiation increases are still unclear and warrant further investigation in order to holistically assess the efficacy of cool pavements, especially with regards to pedestrian thermal comfort.« less
  3. Abstract

    Mosquito-borne diseases (MBD) threaten over 80% of the world’s population, and are increasing in intensity and shifting in geographical range with land use and climate change. Mitigation hinges on understanding disease-specific risk profiles, but current risk maps are severely limited in spatial resolution. One important determinant of MBD risk is temperature, and though the relationships between temperature and risk have been extensively studied, maps are often created using sparse data that fail to capture microclimatic conditions. Here, we leverage high resolution land surface temperature (LST) measurements, in conjunction with established relationships between air temperature and MBD risk factors like mosquito biting rate and transmission probability, to produce fine resolution (70 m) maps of MBD risk components. We focus our case study on West Nile virus (WNV) in the San Joaquin Valley of California, where temperatures vary widely across the day and the diverse agricultural/urban landscape. We first use field measurements to establish a relationship between LST and air temperature, and apply it to Ecosystem Spaceborne Thermal Radiometer Experiment data (2018–2020) in peak WNV transmission months (June–September). We then use the previously derived equations to estimate spatially explicit mosquito biting and WNV transmission rates. We use these maps to uncovermore »significant differences in risk across land cover types, and identify the times of day which contribute to high risk for different land covers. Additionally, we evaluate the value of high resolution spatial and temporal data in avoiding biased risk estimates due to Jensen’s inequality, and find that using aggregate data leads to significant biases of up to 40.5% in the possible range of risk values. Through this analysis, we show that the synergy between novel remote sensing technology and fundamental principles of disease ecology can unlock new insights into the spatio-temporal dynamics of MBDs.

    « less
  4. High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30more »am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well-defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing framework developed in this study can be easily implemented in other urban areas, and findings from this study will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local government to devise targeted hazard mitigation efforts such as increasing green space, developing better heatsafety policies, and exposure warning for workers.« less
  5. Abstract. The Pliocene epoch has great potential to improve ourunderstanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts permillion by volume. Here we present the large-scale features of Plioceneclimate as simulated by a new ensemble of climate models of varyingcomplexity and spatial resolution based on new reconstructions ofboundary conditions (the Pliocene Model Intercomparison Project Phase 2;PlioMIP2). As a global annual average, modelled surface air temperaturesincrease by between 1.7 and 5.2 ∘C relative to the pre-industrial erawith a multi-model mean value of 3.2 ∘C. Annual mean totalprecipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 %more »greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.« less