skip to main content


Title: Chemical defense over decadal scales: Ontogenetic allocation trajectories and consequences for fitness in a foundation tree species
Abstract

Expression of herbivore defense traits can change dramatically during the course of plant development. Little is known, however, about the degree of genetic or sexual variation in these ontogenetic defense trajectories or whether the trajectories themselves are adaptive, especially in long‐lived species.

We used a 13‐year dataset of chemical defense traits, growth and survivorship from a common garden of trembling aspen (Populus tremuloides) genotypes to document long‐term defense trajectories and their relationship to tree fitness during juvenile and early mature stages.

Overall, concentrations of the two principal classes of aspen defense compounds (salicinoid phenolic glycosides [SPGs] and condensed tannins [CTs]) decreased to differing degrees in foliage of juvenile trees and then remained relatively constant in maturity. Initial values, juvenile rates of change and average mature values all exhibited significant genetic variation for both SPGs and CTs.

Relationships between defense trajectory parameters and metrics of tree fitness (growth and survivorship) depended on compound type and tree sex. Females with higher‐allocation SPG trajectories (high initial juvenile concentrations, slow juvenile declines, high mature concentrations) grew more slowly relative to females with lower‐allocation trajectories. In males, higher‐allocation SPG trajectories had a lesser effect on growth but were associated with reduced mortality. Juvenile CT trajectories were not correlated with tree fitness, but average CT concentration in maturity was positively related to growth in females.

These results suggest that ontogenetic defense trajectories are adaptive and subject to natural selection. Genotypic variation and ontogeny shape tree defensive chemistry, both independently and interactively. These patterns of defense expression have the potential to structure trophic interactions and the genetic composition of forests in both space and time.

A freePlain Language Summarycan be found within the Supporting Information of this article.

 
more » « less
NSF-PAR ID:
10459368
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
33
Issue:
11
ISSN:
0269-8463
Page Range / eLocation ID:
p. 2105-2115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.

    Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.

    Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.

    Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.

    Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    Many ectotherms rely on temperature cues experienced during development to determine offspring sex. The first descriptions of temperature‐dependent sex determination (TSD) were made over 50 years ago, yet an understanding of its adaptive significance remains elusive, especially in long‐lived taxa.

    One novel hypothesis predicts that TSD should be evolutionarily favoured when two criteria are met—(a) incubation temperature influences annual juvenile survival and (b) sexes mature at different ages. Under these conditions, a sex‐dependent effect of incubation temperature on offspring fitness arises through differences in age at sexual maturity, with the sex that matures later benefiting disproportionately from temperatures that promote juvenile survival.

    The American alligator (Alligator mississippiensis) serves as an insightful model in which to test this hypothesis, as males begin reproducing nearly a decade after females. Here, through a combination of artificial incubation experiments and mark‐recapture approaches, we test the specific predictions of the survival‐to‐maturity hypothesis for the adaptive value of TSD by disentangling the effects of incubation temperature and sex on annual survival of alligator hatchlings across two geographically distinct sites.

    Hatchlings incubated at male‐promoting temperatures (MPTs) consistently exhibited higher survival compared to those incubated at female‐promoting temperatures. This pattern appears independent of hatchling sex, as females produced from hormone manipulation at MPT exhibit similar survival to their male counterparts.

    Additional experiments show that incubation temperature may affect early‐life survival primarily by affecting the efficiency with which maternally transferred energy resources are used during development.

    Results from this study provide the first explicit empirical support for the adaptive value of TSD in a crocodilian and point to developmental energetics as a potential unifying mechanism underlying persistent survival consequences of incubation temperature.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.

    We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.

    Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.

    Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    We commonly use trait variation to characterize plant function within and among species and understand how vegetation responds to the environment. Seedling emergence is an especially vulnerable window affecting population and community dynamics, yet trait‐based frameworks often bypass this earliest stage of plant life. Here we assess whether traits vary in ecologically meaningful ways when seedlings are just days old. How do shared evolutionary history and environmental conditions shape trait expression, and can traits explain which seedlings endure drought?

    We measured seedling traits in the first 4 days of life for 16 annual plant species under two water treatments, exploring trait trade‐offs, species‐level plasticity and the ability of traits to predict duration of survival under drought.

    Nearly half of traits showed the imprint of evolutionary history (i.e. significant phylogenetic signal), often reflecting differences between grasses and forbs, two groups separated by a deep evolutionary split. Water availability altered trait expression in most cases, though species‐level plastic responses also reflected evolutionary history.

    On average, new seedlings exhibited substantial trait variation structured as multiple trade‐offs like those found in mature plants. Some species invested in thick roots and shoots, whereas others invested in more efficient tissues. Separately, some invested in tougher roots and others in deeper roots. We also observed trade‐offs related to growth rates (fast or slow) and biomass allocation (above‐ or below‐ground). Drought survival time was correlated most strongly with seed mass, root construction and allocation traits, and phylogeny (grasses vs. forbs).

    Synthesis.Our results show that seed and seedling trait variation among annual species is substantial, and that a few attributes could capture major dimensions of ecological strategies during emergence. With seedling survival times ranging twofold among annuals (from 7.5 to 14.5 days), these strategies could mitigate recruitment responses to more frequent or longer dry spells. Multivariate trait and plasticity strategies should be further explored in studies designed to assess trait‐fitness linkages during recruitment.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Abstract

    The non‐consumptive effects of predation risk can strongly affect prey behaviour and fitness with emergent effects on community structure and ecosystem functioning. Prey may respond differently to predation risk based on key traits such as sex, but the influence of sex‐specific variation is typically explored in species with strong sexual dimorphism. However, sex‐specific responses to predation risk may arise even in prey species lacking sexual dimorphisms based on differences in the relative cost of reproduction.

    Using a rocky intertidal food chain, we conducted a laboratory mesocosm experiment to explore sex‐specific responses of morphologically similar, reproductively mature prey (the snailNucella lapillus) to predation risk and whether risk affected female fecundity.

    We found that predation risk suppressed prey growth only in males via effects on growth efficiency, suggesting that sex‐specific disparities may arise due to differences in the energy required for reproduction and/or the costs of mounting a physiological stress response. Moreover, while risk did not affect overall female fecundity, it eliminated the positive relationship between female size and fecundity observed in the absence of risk.

    We hypothesize that these sex‐specific disparities arise due to differences in the energy required for reproduction and/or the costs of mounting a physiological stress response. Reproduction is likely more energetically costly for females than males, so females may display weaker antipredator responses in order to maintain energetic reserves needed for reproduction. Our results suggest that sex‐specific responses may be an important component of inter‐individual differences in prey responses to risk and influence prey population growth and demography even in species lacking sexual dimorphism.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less