skip to main content


Title: Convection reconciles the difference in efficiencies between low-mass and high-mass common envelopes
ABSTRACT

The formation pathways for gravitational-wave merger sources are predicted to include common envelope (CE) evolution. Observations of high-mass post-common envelope binaries suggest that energy transfer to the envelope during the CE phase must be highly efficient. In contrast, observations of low-mass post-CE binaries indicate that energy transfer during the CE phase must be highly inefficient. Convection, a process present in low-mass and high-mass stars naturally explains this dichotomy. Using observations of Wolf–Rayet binaries, we study the effects of convection and radiative losses on the predicted final separations of high-mass common envelopes. Despite robust convection in massive stars, the effect is minimal as the orbit decays well before convection can transport the liberated orbital energy to the surface. In low-mass systems, convective transport occurs faster then the orbit decays, allowing the system to radiatively cool, thereby lowering the efficiency. The inclusion of convection reproduces observations of low-mass and high-mass binaries and remains a necessary ingredient for determining outcomes of common envelopes.

 
more » « less
Award ID(s):
2009713
NSF-PAR ID:
10370925
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2189-2195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution. 
    more » « less
  2. Abstract

    Many core-collapse supernovae (SNe) with hydrogen-poor and low-mass ejecta, such as ultra-stripped SNe and type Ibn SNe, are observed to interact with dense circumstellar material (CSM). These events likely arise from the core collapse of helium stars that have been heavily stripped by a binary companion and have ejected significant mass during the last weeks to years of their lives. In helium star models run to days before core collapse we identify a range of helium core masses ≈2.5–3Mwhose envelopes expand substantially due to the helium shell burning while the core undergoes neon and oxygen burning. When modeled in binary systems, the rapid expansion of these helium stars induces extremely high rates of late-stage mass transfer (Ṁ102Myr1) beginning weeks to decades before core collapse. We consider two scenarios for producing CSM in these systems: either mass transfer remains stable and mass loss is driven from the system in the vicinity of the accreting companion, or mass transfer becomes unstable and causes a common envelope event (CEE) through which the helium envelope is unbound. The ensuing CSM properties are consistent with the CSM masses (∼10−2–1M) and radii (∼1013–1016cm) inferred for ultra-stripped SNe and several type Ibn SNe. Furthermore, systems that undergo a CEE could produce short-period neutron star binaries that merge in less than 100 Myr.

     
    more » « less
  3. Abstract Common envelope (CE) evolution is an outstanding open problem in stellar evolution, critical to the formation of compact binaries including gravitational-wave sources. In the “classical” isolated binary evolution scenario for double compact objects, the CE is usually the second mass transfer phase. Thus, the donor star of the CE is the product of a previous binary interaction, often stable Roche lobe overflow (RLOF). Because of the accretion of mass during the first RLOF, the main-sequence core of the accretor star grows and is “rejuvenated.” This modifies the core-envelope boundary region and decreases significantly the envelope binding energy for the remaining evolution. Comparing accretor stars from self-consistent binary models to stars evolved as single, we demonstrate that the rejuvenation can lower the energy required to eject a CE by ∼42%–96% for both black hole and neutron star progenitors, depending on the evolutionary stage and final orbital separation. Therefore, binaries experiencing first stable mass transfer may more easily survive subsequent CE events and result in possibly wider final separations compared to current predictions. Despite their high mass, our accretors also experience extended “blue loops,” which may have observational consequences for low-metallicity stellar populations and asteroseismology. 
    more » « less
  4. Common-envelope evolution is a stage in binary system evolution in which a giant star engulfs a companion. The standard energy formalism is an analytical framework to estimate the amount of energy transferred from the companion's shrinking orbit into the envelope of the star that engulfed it. We show analytically that this energy transfer is larger than predicted by the standard formalism. As the orbit of the companion shrinks, the mass it encloses becomes smaller, and the companion is less bound than if the enclosed mass had remained constant. Therefore, more energy must be transferred to the envelope for the orbit to shrink further. We derive a revised energy formalism that accounts for this effect, and discuss its consequences in two contexts: the formation of neutron star binaries, and the engulfment of planets and brown dwarfs by their host stars. The companion mass required to eject the stellar envelope is smaller by up to 50% , leading to differences in common-envelope evolution outcomes. The energy deposition in the outer envelope of the star, which is related to the transient luminosity and duration, is up to a factor of ≈7 higher. Common-envelope efficiency values above unity, as defined in the literature, are thus not necessarily unphysical, and result at least partly from an incomplete description of the energy deposition. The revised energy formalism presented here can improve our understanding of stellar merger and common-envelope observations and simulations. 
    more » « less
  5. Abstract

    Gravitational-wave observations of binary black hole (BBH) systems point to black hole spin magnitudes being relatively low. These measurements appear in tension with high spin measurements for high-mass X-ray binaries (HMXBs). We use grids of MESA simulations combined with the rapid population-synthesis code COSMIC to examine the origin of these two binary populations. It has been suggested that Case-A mass transfer while both stars are on the main sequence can form high-spin BHs in HMXBs. Assuming this formation channel, we show that depending on the critical mass ratios for the stability of mass transfer, 48%–100% of these Case-A HMXBs merge during the common-envelope phase and up to 42% result in binaries too wide to merge within a Hubble time. Both MESA and COSMIC show that high-spin HMXBs formed through Case-A mass transfer can only form merging BBHs within a small parameter space where mass transfer can lead to enough orbital shrinkage to merge within a Hubble time. We find that only up to 11% of these Case-A HMXBs result in BBH mergers, and at most 20% of BBH mergers came from Case-A HMXBs. Therefore, it is not surprising that these two spin distributions are observed to be different.

     
    more » « less