While people may be reluctant to explicitly state social stereotypes, their underlying beliefs may nonetheless leak out in subtler conversational cues, such as surprisal reactions that convey information about expectations. Across 3 experiments with adults and children (ages 4-9), we compare permissive responses ("Sure, you can have that one") that vary the presence of surprisal cues (interjections "oh!" and disfluencies "um"). In Experiment 1 (n = 120), children by 6-to-7 use surprisal reactions to infer that a boy more likely made a counter-stereotypical choice. In Experiment 2, we demonstrate that these cues are sufficient for children (n = 120) and adults (n = 80) to learn a novel expectation about a group of aliens. In Experiment 3, adults (n = 150) use the distribution of surprisal information to infer whether a novel behavior is gender-stereotyped. Across these experiments, we see emerging evidence that conversational feedback may provide a crucial and unappreciated avenue for the transmission of social beliefs. 
                        more » 
                        « less   
                    
                            
                            Insights from social transmission of information in rodents
                        
                    
    
            Direct exposure to stimuli in their environment is not the only way that animals learn about important information. Individuals can infer fear from a social context through observation. Like humans, rats are very social animals, and may learn to infer information about their environment through their interactions with conspecifics. Here, we first review different models for social transmission of information in rodents. Second, we examine different modes of communication that are important to social learning. Then, we cover the different proximate factors that are thought to modulate the social transmission of information. Next, we identify social and environmental conditions that impact social learning, and finally, we conclude by revisiting social transmission through the lens of the Tinbergen framework. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1748911
- PAR ID:
- 10370965
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Genes, Brain and Behavior
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1601-1848
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract ObjectivesUnderstanding disease transmission is a fundamental challenge in ecology. We used transmission potential networks to investigate whether a gastrointestinal protozoan (Blastocystisspp.) is spread through social, environmental, and/or zoonotic pathways in rural northeast Madagascar. Materials and MethodsWe obtained survey data, household GPS coordinates, and fecal samples from 804 participants. Surveys inquired about social contacts, agricultural activity, and sociodemographic characteristics. Fecal samples were screened forBlastocystisusing DNA metabarcoding. We also tested 133 domesticated animals forBlastocystis. We used network autocorrelation models and permutation tests (networkk‐test) to determine whether networks reflecting different transmission pathways predicted infection. ResultsWe identified six distinctBlastocystissubtypes among study participants and their domesticated animals. Among the 804 human participants, 74% (n = 598) were positive for at least oneBlastocystissubtype. Close proximity to infected households was the most informative predictor of infection with any subtype (model averaged OR [95% CI]: 1.56 [1.33–1.82]), and spending free time with infected participants was not an informative predictor of infection (model averaged OR [95% CI]: 0.95 [0.82–1.10]). No human participant was infected with the same subtype as the domesticated animals they owned. DiscussionOur findings suggest thatBlastocystisis most likely spread through environmental pathways within villages, rather than through social or animal contact. The most likely mechanisms involve fecal contamination of the environment by infected individuals or shared food and water sources. These findings shed new light on human‐pathogen ecology and mechanisms for reducing disease transmission in rural, low‐income settings.more » « less
- 
            Abstract Social relationships among animals emerge from interactions in multiple ecological and social situations. However, we seldom ask how each situation contributes to the global structure of a population, and whether different situations contribute different information about social relationships and the position of individuals within the social fabric. Griffon vultures (Gyps fulvus) interact socially in multiple situations, including communal roosting, joint flights, and co‐feeding. These social interactions can influence population‐level outcomes, such as disease transmission and information sharing that determine survival and response to changes. We examined the unique contribution of each social and ecological situation to the social structure of the population and individuals' positions within the overall social network using high‐resolution GPS tracking. We found that the number of individuals each vulture interacted with (degree) was best predicted by diurnal interactions—both during flights and on the ground (such as when feeding). However, the strength of social bonds, that is, the number of interactions an individual had (strength), was best predicted by interactions on the ground—both during the day (e.g., while feeding) and at night (e.g., while roosting) but not by interactions while flying. Thus, social situations differ in their impact on the relationships that individuals form. By incorporating the ecological situations in which social interactions occur we gain a more complete view of how social relationships are formed and which situations are important for different types of interactions.more » « less
- 
            Social learning, information transmission and culture play vital roles in the lives of social animals, influencing their survival, reproduction and ability to adapt to changing environments. However, the effect of anthropogenic disturbances on these processes is poorly understood in free-living animals. To investigate the impact of anthropogenic disturbance on social learning and information transmission, we simulated individual removal from contact networks derived from long-term behavioural datasets. We simulate the effects of individual removal on network efficiency and social learning for three group-living species—yellow baboons (Papio cynocephalus), African savanna elephants (Loxodonta africana) and Indo-Pacific bottlenose dolphins (Tursiops aduncus). We reveal how removals of key network positions reduce network efficiency. However, groups with high levels of innovation may cope with changing social network structures. These findings highlight the importance of protecting key individuals to preserve group structure and the role of innovation in possibly mitigating the fitness costs of removals. Identifying and safeguarding individuals that drive innovation can reduce a group’s susceptibility to anthropogenic threats and promote cultural resilience in social animals in a changing world. These emerging trends contribute to a growing understanding of the role of conservation interventions in protecting critical individuals in group-living animals. This article is part of the theme issue ‘Animal culture: conservation in a changing world’.more » « less
- 
            Online social communities are becoming windows for learning more about the health of populations, through information about our health-related behaviors and outcomes from daily life. At the same time, just as public health data and theory has shown that aspects of the built environment can affect our health-related behaviors and outcomes, it is also possible that online social environments (e.g., posts and other attributes of our online social networks) can also shape facets of our life. Given the important role of the online environment in public health research and implications, factors which contribute to the generation of such data must be well understood. Here we study the role of the built and online social environments in the expression of dining on Instagram in Abu Dhabi; a ubiquitous social media platform, city with a vibrant dining culture, and a topic (food posts) which has been studied in relation to public health outcomes. Our study uses available data on user Instagram profiles and their Instagram networks, as well as the local food environment measured through the dining types (e.g., casual dining restaurants, food court restaurants, lounges etc.) by neighborhood. We find evidence that factors of the online social environment (profiles that post about dining versus profiles that do not post about dining) have different influences on the relationship between a user’s built environment and the social dining expression, with effects also varying by dining types in the environment and time of day. We examine the mechanism of the relationships via moderation and mediation analyses. Overall, this study provides evidence that the interplay of online and built environments depend on attributes of said environments and can also vary by time of day. We discuss implications of this synergy for precisely-targeting public health interventions, as well as on using online data for public health research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
