Decision making in utilities, municipal, and energy companies depends on accurate and trustworthy weather information and predictions. Recently, crowdsourced personal weather stations (PWS) are being increasingly used to provide a higher spatial and temporal resolution of weather measurements. However, tools and methods to ensure the trustworthiness of the crowdsourced data in real-time are lacking. In this paper, we present a Reputation System for Crowdsourced Rainfall Networks (RSCRN) to assign trust scores to personal weather stations in a region. Using real PWS data from the Weather Underground service in the high flood risk region of Norfolk, Virginia, we evaluate the performance of the proposed RSCRN. The proposed method is able to converge to a confident trust score for a PWS within 10--20 observations after installation. Collectively, the results indicate that the trust score derived from the RSCRN can reflect the collective measure of trustworthiness to the PWS, ensuring both useful and trustworthy data for modeling and decision-making in the future. 
                        more » 
                        « less   
                    
                            
                            Assessing the Trustworthiness of Crowdsourced Rainfall Networks: A Reputation System Approach
                        
                    
    
            Abstract High resolution and accurate rainfall information is essential to modeling and predicting hydrological processes. Crowdsourced personal weather stations (PWSs) have become increasingly popular in recent years and can provide dense spatial and temporal resolution in rainfall estimates. However, their usefulness could be limited due to less trust in crowdsourced data compared to traditional data sources. Using crowdsourced PWSs data without a robust evaluation of its trustworthiness can result in inaccurate rainfall estimates as PWSs are installed and maintained by non‐experts. In this study, we advance the Reputation System for Crowdsourced Rainfall Networks (RSCRN) to bridge this trust gap by assigning dynamic trust scores to PWSs. Based on rainfall data collected from 18 PWSs in two dense clusters in Houston, Texas, USA as a case study, we found that using RSCRN‐derived trust scores can increase the accuracy of 15‐min PWS rainfall estimates when compared to rainfall observations recorded at the city's high‐fidelity rainfall stations. Overall, RSCRN rainfall estimates improved for 77% (48 out of 62) of the analyzed storm events, with a median root‐mean‐square error (RMSE) improvement of 27.3%. Compared to an existing PWS quality control method, results showed that RSCRN improved rainfall estimates for 71% of the storm events (44 out of 62), with a median RMSE improvement of 18.7%. Using RSCRN‐derived trust scores can make the rapidly growing network of PWSs a more useful resource for hydrologic applications, greatly improving knowledge of rainfall patterns in areas with dense PWSs. 
        more » 
        « less   
        
    
                            - Award ID(s):
 - 1735587
 
- PAR ID:
 - 10371007
 
- Publisher / Repository:
 - DOI PREFIX: 10.1029
 
- Date Published:
 
- Journal Name:
 - Water Resources Research
 
- Volume:
 - 57
 
- Issue:
 - 12
 
- ISSN:
 - 0043-1397
 
- Format(s):
 - Medium: X
 
- Sponsoring Org:
 - National Science Foundation
 
More Like this
- 
            
 - 
            Abstract High temporal and spatial resolution precipitation datasets are essential for hydrological and flood modeling to assist water resource management and emergency responses, particularly for small watersheds, such as those in Hawai‘i in the United States. Unfortunately, fine temporal (subdaily) and spatial (<1 km) resolutions of rainfall datasets are not always readily available for applications. Radar provides indirect measurements of the rain rate over a large spatial extent with a reasonable temporal resolution, while rain gauges provide “ground truth.” There are potential advantages to combining the two, which have not been fully explored in tropical islands. In this study, we applied kriging with external drift (KED) to integrate hourly gauge and radar rainfall into a 250 m × 250 m gridded dataset for the tropical island of O‘ahu. The results were validated with leave-one-out cross validation for 18 severe storm events, including five different storm types (e.g., tropical cyclone, cold front, upper-level trough, kona low, and a mix of upper-level trough and kona low), and different rainfall structures (e.g., stratiform and convective). KED-merged rainfall estimates outperformed both the radar-only and gauge-only datasets by 1) reducing the error from radar rainfall and 2) improving the underestimation issues from gauge rainfall, especially during convective rainfall. We confirmed the KED method can be used to merge radar with gauge data to generate reliable rainfall estimates, particularly for storm events, on mountainous tropical islands. In addition, KED rainfall estimates were consistently more accurate in depicting spatial distribution and maximum rainfall value within various storm types and rainfall structures. Significance StatementThe results of this study show the effectiveness of utilizing kriging with external drift (KED) in merging gauge and radar rainfall data to produce highly accurate, reliable rainfall estimates in mountainous tropical regions, such as O‘ahu. The validated KED dataset, with its high temporal and spatial resolutions, offers a valuable resource for various types of rainfall-related research, particularly for extreme weather response and rainfall intensity analyses in Hawai’i. Our findings improve the accuracy of rainfall estimates and contribute to a deeper understanding of the performance of various rainfall estimation methods under different storm types and rainfall structures in a mountainous tropical setting.more » « less
 - 
            Many radar-gauge merging methods have been developed to produce improved rainfall data by leveraging the advantages of gauge and radar observations. Two popular merging methods, Regression Kriging and Bayesian Regression Kriging were utilized and compared in this study to produce hourly rainfall data from gauge networks and multi-source radar datasets. The authors collected, processed, and modeled the gauge and radar rainfall data (Stage IV, MRMS and RTMA radar data) of the two extreme storm events (i.e., Hurricane Harvey in 2017 and Tropical Storm Imelda in 2019) occurring in the coastal area in Southeast Texas with devastating flooding. The analysis of the modeled data on consideration of statistical metrics, physical rationality, and computational expenses, implies that while both methods can effectively improve the radar rainfall data, the Regression Kriging model demonstrates its superior performance over that of the Bayesian Regression Kriging model since the latter is found to be prone to overfitting issues due to the clustered gauge distributions. Moreover, the spatial resolution of rainfall data is found to affect the merging results significantly, where the Bayesian Regression Kriging model works unskillfully when radar rainfall data with a coarser resolution is used. The study recommends the use of high-quality radar data with properly spatial-interpolated gauge data to improve the radar-gauge merging methods. The authors believe that the findings of the study are critical for assisting hazard mitigation and future design improvement.more » « less
 - 
            Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management.more » « less
 - 
            Low-cost sensors (LCSs) emerge as a popular tool for urban micro-climate studies by offering dense observational coverage. This study evaluates the performance of PurpleAir (PA) sensors for ambient temperature monitoring—a key but underexplored aspect of their use. While widely used for particulate matter, PA sensors’ temperature data remain underutilized and lack thorough validation. For the first time, this research evaluates their accuracy by comparing PA temperature measurements with collocated high-precision temperature data loggers across a dense urban network in a humid subtropical U.S. county. Results show a moderate correlation with reference data (r = 0.86) but an average overestimation of 3.77 °C, indicating PA sensors are better suited for identifying temperature trends but not for precise applications like extreme heat events. We also developed and compared eight calibration methods to create a replicable model using readily available crowdsourced data. The best-performing model reduced RMSE and MAE by 51% and 47%, respectively, and achieved an R2 of 0.89 compared to the uncalibrated scenario. Finally, the practical application of PA temperature data for identifying heat wave events was investigated, including an assessment of associated uncertainties. In sum, this work provides a crucial evaluation of PA’s temperature monitoring capabilities, offering a pathway for improved heat mapping, multi-hazard vulnerability assessments, and public health interventions in the development of climate-resilient cities.more » « less
 
An official website of the United States government 
				
			