skip to main content

Title: Forecasting Groundwater Table in a Flood Prone Coastal City with Long Short-term Memory and Recurrent Neural Networks
Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tide gauge water levels are commonly used as a proxy for flood incidence on land. These proxies are useful for projecting how sea‐level rise (SLR) will increase the frequency of coastal flooding. However, tide gauges do not account for land‐based sources of coastal flooding and therefore flood thresholds and the proxies derived from them likely underestimate the current and future frequency of coastal flooding. Here we present a new sensor framework for measuring the incidence of coastal floods that captures both subterranean and land‐based contributions to flooding. The low‐cost, open‐source sensor framework consists of a storm drain water level sensor, roadway camera, and wireless gateway that transmit data in real‐time. During 5 months of deployment in the Town of Beaufort, North Carolina, 24 flood events were recorded. Twenty‐five percent of those events were driven by land‐based sources—rainfall, combined with moderate high tides and reduced capacity in storm drains. Consequently, we find that flood frequency is higher than that suggested by proxies that rely exclusively on tide gauge water levels for determining flood incidence. This finding likely extends to other locations where stormwater networks are at a reduced drainage capacity due to SLR. Our results highlight the benefits of instrumenting stormwater networks directly to capture multiple drivers of coastal flooding. More accurate estimates of the frequency and drivers of floods in low‐lying coastal communities can enable the development of more effective long‐term adaptation strategies.

    more » « less
  2. null (Ed.)
    Abstract Flooding in coastal cities is increasing due to climate change and sea-level rise, stressing the traditional stormwater systems these communities rely on. Automated real-time control (RTC) of these systems can improve performance, and creating control policies for smart stormwater systems is an active area of study. This research explores reinforcement learning (RL) to create control policies to mitigate flood risk. RL is trained using a model of hypothetical urban catchments with a tidal boundary and two retention ponds with controllable valves. RL's performance is compared to the passive system, a model predictive control (MPC) strategy, and a rule-based control strategy (RBC). RL learns to proactively manage pond levels using current and forecast conditions and reduced flooding by 32% over the passive system. Compared to the MPC approach using a physics-based model and genetic algorithm, RL achieved nearly the same flood reduction, just 3% less than MPC, with a significant 88× speedup in runtime. Compared to RBC, RL was able to quickly learn similar control strategies and reduced flooding by an additional 19%. This research demonstrates that RL can effectively control a simple system and offers a computationally efficient method that could scale to RTC of more complex stormwater systems. 
    more » « less
  3. The active control of stormwater systems is a potential solution to increased street flooding in low-lying, low-relief coastal cities due to climate change and accompanying sea level rise. Model predictive control (MPC) has been shown to be a successful control strategy generally and as well as for managing urban drainage specifically. This research describes and demonstrates the implementation of MPC for urban drainage systems using open source software (Python and The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM5). The system was demonstrated using a simplified use case in which an actively-controlled outlet of a detention pond is simulated. The control of the pond’s outlet influences the flood risk of a downstream node. For each step in the SWMM5 model, a series of policies for controlling the outlet are evaluated. The best policy is then selected using an evolutionary algorithm. The policies are evaluated against an objective function that penalizes primarily flooding and secondarily deviation of the detention pond level from a target level. Freely available Python libraries provide the key functionality for the MPC workflow: step-by-step running of the SWMM5 simulation, evolutionary algorithm implementation, and leveraging parallel computing. For perspective, the MPC results were compared to results from a rule-based approach and a scenario with no active control. The MPC approach produced a control policy that largely eliminated flooding (unlike the scenario with no active control) and maintained the detention pond’s water level closer to a target level (unlike the rule-based approach). 
    more » « less
  4. Abstract

    Accurate and timely storm surge forecasts are essential during tropical cyclone events in order to assess the magnitude and location of the impacts. Coupled ocean‐atmosphere dynamical models provide accurate measures of storm surge but remain too computationally expensive to run for real‐time forecasting purposes. Therefore, it is common to utilize a parametric vortex model, implemented within a hydrodynamic model, which decreases computational time at the expense of forecast accuracy. Recently, data‐driven neural networks are being implemented as an alternative due to their combined efficiency and high accuracy. This work seeks to examine how an artificial neural network (ANN) can be used to make accurate storm surge predictions, and explores the added value of using a recurrent neural network (RNN). In particular, it is concerned with determining the parameters needed to successfully implement a neural network model for the Mid‐Atlantic Bight region. The neural network models were trained with modeled data resulting from coupling of the Hybrid Weather Research and Forecasting cyclone model (HWCM) and the Advanced Circulation Model. An ensemble of synthetic, but physically plausible, cyclones were simulated using the HWCM and used as input for the hydrodynamic model. Tests of the ANN were conducted to investigate the optimal lead‐time configuration of the input data and the neural network architecture needed to minimize storm surge forecast errors. Results highlight the accuracy of the ANN in forecasting moderate storm surge levels, while indicating a deficiency in capturing the magnitude of the peak values, which is improved in the implementation of the RNN.

    more » « less
  5. null (Ed.)
    Flooding in many areas is becoming more prevalent due to factors such as urbanization and climate change, requiring modernization of stormwater infrastructure. Retrofitting standard passive systems with controllable valves/pumps is promising, but requires real-time control (RTC). One method of automating RTC is reinforcement learning (RL), a general technique for sequential optimization and control in uncertain environments. The notion is that an RL algorithm can use inputs of real-time flood data and rainfall forecasts to learn a policy for controlling the stormwater infrastructure to minimize measures of flooding. In real-world conditions, rainfall forecasts and other state information are subject to noise and uncertainty. To account for these characteristics of the problem data, we implemented Deep Deterministic Policy Gradient (DDPG), an RL algorithm that is distinguished by its capability to handle noise in the input data. DDPG implementations were trained and tested against a passive flood control policy. Three primary cases were studied: (i) perfect data, (ii) imperfect rainfall forecasts, and (iii) imperfect water level and forecast data. Rainfall episodes (100) that caused flooding in the passive system were selected from 10 years of observations in Norfolk, Virginia, USA; 85 randomly selected episodes were used for training and the remaining 15 unseen episodes served as test cases. Compared to the passive system, all RL implementations reduced flooding volume by 70.5% on average, and performed within a range of 5%. This suggests that DDPG is robust to noisy input data, which is essential knowledge to advance the real-world applicability of RL for stormwater RTC. 
    more » « less