skip to main content


Title: Towards wearable piezoelectric energy harvesting: modeling and experimental validation
Motion energy harvesting is an ideal alternative to battery in wearable applications since it can produce energy on demand. So far, widespread use of this technology has been hindered by bulky, inflexible and impractical designs. New flexible piezoelectric materials enable comfortable use of this technology. However, the energy harvesting potential of this approach has not been thoroughly investigated to date. This paper presents a novel mathematical model for estimating the energy that can be harvested from joint movements on the human body. The proposed model is validated using two different piezoelectric materials attached on a 3D model of the human knee. To the best of our knowledge, this is the first study that combines analytical modeling and experimental validation for joint movements. Thorough experimental evaluations show that 1) users can generate on average 13 μW power while walking, 2) we can predict the generated power with 4.8% modeling error.  more » « less
Award ID(s):
2114499
PAR ID:
10259935
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM/IEEE International Symposium on Low Power Electronics and Design
Page Range / eLocation ID:
55 to 60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body’s continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life. 
    more » « less
  2. Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.

     
    more » « less
  3. Abstract

    Piezoelectric transducers are widely employed in vibration control and energy harvesting. The effective electro-mechanical coupling of a piezoelectric system is related to the inherent capacitance of the piezoelectric transducer. It is known that passive vibration suppression through piezoelectric LC shunt can be enhanced with the integration of negative capacitance which however requires a power supply. This research focuses on the parametric investigation of a self-sustainable negative capacitance where the piezoelectric transducer is concurrently used in both vibration suppression and energy harvesting through LC shunt. The basic idea is to utilize the energy harvesting functionality of the piezoelectric transducer to aid the usage of negative capacitance in terms of power supply. Specifically, the power consumption and circuitry performance with respect to negative capacitance circuit design is analyzed thoroughly. Indeed, the net power generation is the difference between available power in the shunt circuit and the power consumption of the negative capacitance circuit. There exists complex tradeoffs between net power generation and the vibration suppression performance when we use different resistance values in the negative capacitance circuit. It is demonstrated through correlated analytical simulation and experimental study that the proper selection of the resistance values in the negative capacitance circuit can result in vibration suppression enhancement as well as improved net power generation, leading to a self-sustainable negative capacitance scheme.

     
    more » « less
  4. Abstract: This paper aims to develop a novel concept for energy harvesting via flexible inverted flags combining photovoltaic cells with piezoelectric flexible films. Using technology currently available, we have designed and fabricated piezo-pyro-photo-electric harvesters made of polyvinylidene fluoride (PVDF) piezoelectric elements combined with mini solar panels made of silicon. Experimental measurements of the motion dynamics and power generation were collected for the flags when subjected to wind, heat, and light sources simultaneously and individually. Results indicate a significant improvement in energy harvesting capability compared to isolated single piezoelectric devices. Thus, we anticipate a substantial impact of piezo- pyro-photo-electric energy harvesting device applications where remote power generation is needed. The Flag uses flexible piezoelectric and pyroelectric strips and flexible photovoltaic cells panel. The piezo-pyro- simultaneously generates power through movement and heat, respectively, while the photovoltaic cells harvest solar energy to produce electric power. The beauty of this Flag is to develop power day and night depending on the energy sources available. The basic concept is presented and validated by laboratory experiments with controlled airflow, light, and infrared heat. The maximum voltage generated was 60 mV when the Flag was simultaneously exposed to low-level wind, thermal and light energies. 
    more » « less
  5. Recent advances in precision manufacturing technology and a thorough understanding of the properties of piezoelectric materials have made it possible for researchers to develop innovative microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas that are inaccessible to ordinary robots. This review paper provides an overview of the recent advances in the application of piezoelectric materials in microrobots. The challenges of microrobots in the direction of autonomy are categorized into four sections: mechanisms, power, sensing, and control. In each section, innovative research ideas are presented to inspire researchers in their prospective microrobot designs according to specific applications. Novel mechanisms for the mobility of piezoelectric microrobots are reviewed and described. Additionally, as the piezoelectric micro-actuators require high-voltage electronics and onboard power supplies, we review ways of energy harvesting technology and lightweight micro-sensing mechanisms that contain piezoelectric devices to provide feedback, facilitating the use of control strategies to achieve the autonomous untethered movement of microrobots. 
    more » « less