Abstract SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy,FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments.FLIFdisplayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) againstFLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys likeFLIFmay be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
more »
« less
Elucidating Design Principles for Engineering Cell‐Derived Vesicles to Inhibit SARS‐CoV‐2 Infection
Abstract The ability of pathogens to develop drug resistance is a global health challenge. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) presents an urgent need wherein several variants of concern resist neutralization by monoclonal antibody (mAb) therapies and vaccine‐induced sera. Decoy nanoparticles—cell‐mimicking particles that bind and inhibit virions—are an emerging class of therapeutics that may overcome such drug resistance challenges. To date, quantitative understanding as to how design features impact performance of these therapeutics is lacking. To address this gap, this study presents a systematic, comparative evaluation of various biologically derived nanoscale vesicles, which may be particularly well suited to sustained or repeated administration in the clinic due to low toxicity, and investigates their potential to inhibit multiple classes of model SARS‐CoV‐2 virions. A key finding is that such particles exhibit potent antiviral efficacy across multiple manufacturing methods, vesicle subclasses, and virus‐decoy binding affinities. In addition, these cell‐mimicking vesicles effectively inhibit model SARS‐CoV‐2 variants that evade mAbs and recombinant protein‐based decoy inhibitors. This study provides a foundation of knowledge that may guide the design of decoy nanoparticle inhibitors for SARS‐CoV‐2 and other viral infections.
more »
« less
- PAR ID:
- 10371205
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 19
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.more » « less
-
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nu-cleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ (HD) and Nϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.more » « less
-
The main protease (M pro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M pro , a cysteine protease, have been determined, facilitating structure-based drug design. M pro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, M pro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV M pro , but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 M pro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of M pro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 M pro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.more » « less
-
Abstract Purpose of the ReviewSARS-CoV-2 undergoes genetic mutations like many other viruses. Some mutations lead to the emergence of new Variants of Concern (VOCs), affecting transmissibility, illness severity, and the effectiveness of antiviral drugs. Continuous monitoring and research are crucial to comprehend variant behavior and develop effective response strategies, including identifying mutations that may affect current drug therapies. Recent FindingsAntiviral therapies such as Nirmatrelvir and Ensitrelvir focus on inhibiting 3CLpro, whereas Remdesivir, Favipiravir, and Molnupiravir target nsp12, thereby reducing the viral load. However, the emergence of resistant mutations in 3CLpro and nsp12 could impact the efficiency of these small molecule drug therapeutics. SummaryThis manuscript summarizes mutations in 3CLpro and nsp12, which could potentially reduce the efficacy of drugs. Additionally, it encapsulates recent advancements in small molecule antivirals targeting SARS-CoV-2 viral proteins, including their potential for developing resistance against emerging variants.more » « less
An official website of the United States government
