skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: The geometric distribution of Selmer groups of elliptic curves over function fields
Abstract

Fix a positive integernand a finite field$${\mathbb {F}}_q$$Fq. We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$rk(E), then-Selmer group$$\text {Sel}_n(E)$$Seln(E), and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$d2over$${\mathbb {F}}_q(t)$$Fq(t). We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.

 
more » « less
NSF-PAR ID:
10371268
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mathematische Annalen
Volume:
387
Issue:
1-2
ISSN:
0025-5831
Page Range / eLocation ID:
p. 615-687
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$X=C1××Cdof smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$X=C1×C2of two curves over$$\mathbb {Q} $$Qwith positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$J1(Q)J2(Q)εCH0(C1×C2)is finite, where$$J_i$$Jiis the Jacobian variety of$$C_i$$Ci. Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$E1,E2with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$X=C1××Cdfor which the analogous map$$\varepsilon $$εhas finite image.

     
    more » « less
  2. Abstract

    We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble$$\hbox {CLE}_{\kappa '}$$CLEκfor$$\kappa '$$κin (4, 8) that is drawn on an independent$$\gamma $$γ-LQG surface for$$\gamma ^2=16/\kappa '$$γ2=16/κ. The results are similar in flavor to the ones from our companion paper dealing with$$\hbox {CLE}_{\kappa }$$CLEκfor$$\kappa $$κin (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\hbox {CLE}_{\kappa '}$$CLEκin terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “CLE Percolations” described the law of interfaces obtained when coloring the loops of a$$\hbox {CLE}_{\kappa '}$$CLEκindependently into two colors with respective probabilitiespand$$1-p$$1-p. This description was complete up to one missing parameter$$\rho $$ρ. The results of the present paper about CLE on LQG allow us to determine its value in terms ofpand$$\kappa '$$κ. It shows in particular that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κare related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {FK}_q$$FKqpercolation and theq-state Potts model (which makes sense even for non-integerqbetween 1 and 4) if and only if$$q=4\cos ^2(4\pi / \kappa ')$$q=4cos2(4π/κ). This provides further evidence for the long-standing belief that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κrepresent the scaling limits of$$\hbox {FK}_q$$FKqpercolation and theq-Potts model whenqand$$\kappa '$$κare related in this way. Another consequence of the formula for$$\rho (p,\kappa ')$$ρ(p,κ)is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.

     
    more » « less
  3. Abstract

    Let$$X\rightarrow {{\mathbb {P}}}^1$$XP1be an elliptically fiberedK3 surface, admitting a sequence$$\omega _{i}$$ωiof Ricci-flat metrics collapsing the fibers. LetVbe a holomorphicSU(n) bundle overX, stable with respect to$$\omega _i$$ωi. Given the corresponding sequence$$\Xi _i$$Ξiof Hermitian–Yang–Mills connections onV, we prove that, ifEis a generic fiber, the restricted sequence$$\Xi _i|_{E}$$Ξi|Econverges to a flat connection$$A_0$$A0. Furthermore, if the restriction$$V|_E$$V|Eis of the form$$\oplus _{j=1}^n{\mathcal {O}}_E(q_j-0)$$j=1nOE(qj-0)forndistinct points$$q_j\in E$$qjE, then these points uniquely determine$$A_0$$A0.

     
    more » « less
  4. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

     
    more » « less
  5. Abstract

    A search for exotic decays of the Higgs boson ($$\text {H}$$H) with a mass of 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVto a pair of light pseudoscalars$$\text {a}_{1} $$a1is performed in final states where one pseudoscalar decays to two$${\textrm{b}}$$bquarks and the other to a pair of muons or$$\tau $$τleptons. A data sample of proton–proton collisions at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeVcorresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\text {CL}$$CL) on the Higgs boson branching fraction to$$\upmu \upmu \text{ b } \text{ b } $$μμbband to$$\uptau \uptau \text{ b } \text{ b },$$ττbb,via a pair of$$\text {a}_{1} $$a1s. The limits depend on the pseudoscalar mass$$m_{\text {a}_{1}}$$ma1and are observed to be in the range (0.17–3.3) $$\times 10^{-4}$$×10-4and (1.7–7.7) $$\times 10^{-2}$$×10-2in the$$\upmu \upmu \text{ b } \text{ b } $$μμbband$$\uptau \uptau \text{ b } \text{ b } $$ττbbfinal states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$B(Ha1a1bb)at 95%$$\text {CL}$$CL, with$$\ell $$being a muon or a$$\uptau $$τlepton. For different types of 2HDM+S, upper bounds on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)values above 0.23 are excluded at 95%$$\text {CL}$$CLfor$$m_{\text {a}_{1}}$$ma1values between 15 and 60$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeV.

     
    more » « less