skip to main content


Title: Functional control of oscillator networks
Abstract

Oscillatory activity is ubiquitous in natural and engineered network systems. The interaction scheme underlying interdependent oscillatory components governs the emergence of network-wide patterns of synchrony that regulate and enable complex functions. Yet, understanding, and ultimately harnessing, the structure-function relationship in oscillator networks remains an outstanding challenge of modern science. Here, we address this challenge by presenting a principled method to prescribe exact and robust functional configurations from local network interactions through optimal tuning of the oscillators’ parameters. To quantify the behavioral synchrony between coupled oscillators, we introduce the notion offunctional pattern, which encodes the pairwise relationships between the oscillators’ phases. Our procedure is computationally efficient and provably correct, accounts for constrained interaction types, and allows to concurrently assign multiple desired functional patterns. Further, we derive algebraic and graph-theoretic conditions to guarantee the feasibility and stability of target functional patterns. These conditions provide an interpretable mapping between the structural constraints and their functional implications in oscillator networks. As a proof of concept, we apply the proposed method to replicate empirically recorded functional relationships from cortical oscillations in a human brain, and to redistribute the active power flow in different models of electrical grids.

 
more » « less
Award ID(s):
1926829
NSF-PAR ID:
10371303
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synchronization in the gamma band (25–150 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's Type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for Type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition.

     
    more » « less
  2. Abstract

    The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters.

     
    more » « less
  3. null (Ed.)
    Networks of coupled oscillators are some of the most studied objects in the theory of dynamical systems. Two important areas of current interest are the study of synchrony in highly disordered systems and the modeling of systems with adaptive network structures. Here, we present a single approach to both of these problems in the form of "KuraNet", a deep-learning-based system of coupled oscillators that can learn to synchronize across a distribution of disordered network conditions. The key feature of the model is the replacement of the traditionally static couplings with a coupling function which can learn optimal interactions within heterogeneous oscillator populations. We apply our approach to the eponymous Kuramoto model and demonstrate how KuraNet can learn data-dependent coupling structures that promote either global or cluster synchrony. For example, we show how KuraNet can be used to empirically explore the conditions of global synchrony in analytically impenetrable models with disordered natural frequencies, external field strengths, and interaction delays. In a sequence of cluster synchrony experiments, we further show how KuraNet can function as a data classifier by synchronizing into coherent assemblies. In all cases, we show how KuraNet can generalize to both new data and new network scales, making it easy to work with small systems and form hypotheses about the thermodynamic limit. Our proposed learning-based approach is broadly applicable to arbitrary dynamical systems with wide-ranging relevance to modeling in physics and systems biology. 
    more » « less
  4. Abstract

    Systems of coupled nonlinear oscillators often exhibit states of partial synchrony in which some of the oscillators oscillate coherently while the rest remain incoherent. If such a state emerges spontaneously, in other words, if it cannot be associated with any heterogeneity in the system, it is generally referred to as a chimera state. In planar oscillator arrays, these chimera states can take the form of rotating spiral waves surrounding an incoherent core, resembling those observed in oscillatory or excitable media, and may display complex dynamical behavior. To understand this behavior we study stationary and moving chimera states in planar phase oscillator arrays using a combination of direct numerical simulations and numerical continuation of solutions of the corresponding continuum limit, focusing on the existence and properties of traveling spiral wave chimeras as a function of the system parameters. The oscillators are coupled nonlocally and their frequencies are drawn from a Lorentzian distribution. Two cases are discussed in detail, that of a top-hat coupling function and a two-parameter truncated Fourier approximation to this function in Cartesian coordinates. The latter allows semi-analytical progress, including determination of stability properties, leading to a classification of possible behaviors of both static and moving chimera states. The transition from stationary to moving chimeras is shown to be accompanied by the appearance of complex filamentary structures within the incoherent spiral wave core representing secondary coherence regions associated with temporal resonances. As the parameters are varied the number of such filaments may grow, a process reflected in a series of folds in the corresponding bifurcation diagram showing the drift speedsas a function of the phase-lag parameterα.

     
    more » « less
  5. Oscillations in the brain are one of the most ubiquitous and robust patterns of activity and correlate with various cognitive phenomena. In this work, we study the existence and properties of oscillations in simple mean-field models of brain activity with bounded linear-threshold rate dynamics. First, we obtain exact conditions for the existence of limit cycles in two-dimensional excitatory-inhibitory networks (E-I pairs) and provide generalizations for networks with one inhibitory and multiple excitatory nodes. Building on these results, we study networks of multiple E-I pairs, provide exact conditions for the lack of stable equilibria, and numerically show that this is a tight proxy for the existence of oscillatory behavior. Finally, we study cross-frequency coupling between pairs of oscillators each consisting of an E-I pair. We find that while both phase-phase coupling (synchronization) and phase-amplitude coupling (PAC) monotonically increase with inter-oscillator connection strength, there exists a tradeoff in increasing frequency mismatch between the oscillators as it de-synchronizes them while enhancing their PAC. 
    more » « less