Abstract Coupled electronic oscillators have recently been explored as a compact, integrated circuit- and room temperature operation-compatible hardware platform to design Ising machines. However, such implementations presently require the injection of an externally generated second-harmonic signal to impose the phase bipartition among the oscillators. In this work, we experimentally demonstrate a new electronic autaptic oscillator (EAO) that uses engineered feedback to eliminate the need for the generation and injection of the external second harmonic signal to minimize the Ising Hamiltonian. Unlike conventional relaxation oscillators that typically decay with a single time constant, the feedback in the EAO is engineered to generate two decay time constants which effectively helps generate the second harmonic signal internally. Using this oscillator design, we show experimentally, that a system of capacitively coupled EAOs exhibits the desired bipartition in the oscillator phases without the need for any external second harmonic injection, and subsequently, demonstrate its application in solving the computationally hard Maximum Cut (MaxCut) problem. Our work not only establishes a new oscillator design aligned to the needs of the oscillator Ising machine but also advances the efforts to creating application specific analog computing platforms.
more »
« less
Optimal phase-selective entrainment of electrochemical oscillators with different phase response curves
We investigate the entrainment of electrochemical oscillators with different phase response curves (PRCs) using a global signal: the goal is to achieve the desired phase configuration using a minimum-power waveform. Establishing the desired phase relationships in a highly nonlinear networked system exhibiting significant heterogeneities, such as different conditions or parameters for the oscillators, presents a considerable challenge because different units respond differently to the common global entraining signal. In this work, we apply an optimal phase-selective entrainment technique in both a kinetic model and experiments involving electrochemical oscillators in achieving phase synchronized states. We estimate the PRCs of the oscillators at different circuit potentials and external resistance, and entrain pairs and small sets of four oscillators in various phase configurations. We show that for small PRC variations, phase assignment can be achieved using an averaged PRC in the control design. However, when the PRCs are sufficiently different, individual PRCs are needed to entrain the system with the expected phase relationships. The results show that oscillator assemblies with heterogeneous PRCs can be effectively entrained to desired phase configurations in practical settings. These findings open new avenues to applications in biological and engineered oscillator systems where synchronization patterns are essential for system performance.
more »
« less
- Award ID(s):
- 1900011
- PAR ID:
- 10557355
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 34
- Issue:
- 7
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonlinear dynamical systems such as coupled oscillators are being actively investigated as Ising machines for solving computationally hard problems in combinatorial optimization. Prior works have established the equivalence between the global minima of the cost function describing the coupled oscillator system and the ground state of the Ising Hamiltonian. However, the properties of the oscillator Ising machine (OIM) from a nonlinear control viewpoint, such as the stability of the OIM solutions, remain unexplored. Therefore, in this work, using nonlinear control-theoretic analysis, we (i) identify the conditions required to ensure the functionality of the coupled oscillators as an Ising machine, (ii) show that all globally optimal phase configurations may not always be stable, resulting in some configurations being more favored over others and, thus, creating a biased OIM, and (iii) elucidate the impact of the stability of locally optimal phase configurations on the quality of the solution computed by the system. Our work, fostered through the unique convergence between nonlinear control theory and analog systems for computing, provides a new toolbox for the design and implementation of dynamical system-based computing platforms.more » « less
-
Phase reduction is a well-established method to study weakly driven and weakly perturbed oscillators. Traditional phase-reduction approaches characterize the perturbed system dynamics solely in terms of the timing of the oscillations. In the case of large perturbations, the introduction of amplitude (isostable) coordinates improves the accuracy of the phase description by providing a sense of distance from the underlying limit cycle. Importantly, phase-amplitude coordinates allow for the study of both the timing and shape of system oscillations. A parallel tool is the infinitesimal shape response curve (iSRC), a variational method that characterizes the shape change of a limit-cycle oscillator under sustained perturbation. Despite the importance of oscillation amplitude in a wide range of physical systems, systematic studies on the shape change of oscillations remain scarce. Both phase-amplitude coordinates and the iSRC represent methods to analyze oscillation shape change, yet a relationship between the two has not been previously explored. In this work, we establish the iSRC and phase-amplitude coordinates as complementary tools to study oscillation amplitude. We extend existing iSRC theory and specify conditions under which a general class of systems can be analyzed by the joint iSRC phase-amplitude approach. We show that the iSRC takes on a dramatically simple form in phase-amplitude coordinates, and directly relate the phase and isostable response curves to the iSRC. We apply our theory to weakly perturbed single oscillators, and to study the synchronization and entrainment of coupled oscillators.more » « less
-
Abstract Oscillatory activity is ubiquitous in natural and engineered network systems. The interaction scheme underlying interdependent oscillatory components governs the emergence of network-wide patterns of synchrony that regulate and enable complex functions. Yet, understanding, and ultimately harnessing, the structure-function relationship in oscillator networks remains an outstanding challenge of modern science. Here, we address this challenge by presenting a principled method to prescribe exact and robust functional configurations from local network interactions through optimal tuning of the oscillators’ parameters. To quantify the behavioral synchrony between coupled oscillators, we introduce the notion offunctional pattern, which encodes the pairwise relationships between the oscillators’ phases. Our procedure is computationally efficient and provably correct, accounts for constrained interaction types, and allows to concurrently assign multiple desired functional patterns. Further, we derive algebraic and graph-theoretic conditions to guarantee the feasibility and stability of target functional patterns. These conditions provide an interpretable mapping between the structural constraints and their functional implications in oscillator networks. As a proof of concept, we apply the proposed method to replicate empirically recorded functional relationships from cortical oscillations in a human brain, and to redistribute the active power flow in different models of electrical grids.more » « less
-
null (Ed.)Abstract We study the impact of light on the mammalian circadian system using the theory of phase response curves. Using a recently developed ansatz we derive a low-dimensional macroscopic model for the core circadian clock in mammals. Significantly, the variables and parameters in our model have physiological interpretations and may be compared with experimental results. We focus on the effect of four key factors which help shape the mammalian phase response to light: heterogeneity in the population of oscillators, the structure of the typical light phase response curve, the fraction of oscillators which receive direct light input and changes in the coupling strengths associated with seasonal day-lengths. We find these factors can explain several experimental results and provide insight into the processing of light information in the mammalian circadian system. In particular, we find that the sensitivity of the circadian system to light may be modulated by changes in the relative coupling forces between the light sensing and non-sensing populations. Finally, we show how seasonal day-length, after-effects to light entrainment and seasonal variations in light sensitivity in the mammalian circadian clock are interrelated.more » « less