Abstract We consider$$Z'$$ s in heterotic string derived models and study$$Z'$$ resonant production at the TeV scale at the Large Hadron Collider (LHC). We use various kinematic differential distributions for the Drell–Yan process at NNLO in QCD to explore the parameter space of such models and investigate$$Z'$$ couplings. In particular, we study the impact ofZ-$$Z'$$ kinetic-mixing interactions on forward-backward asymmetry ($$A_{FB}$$ ) and other distributions at the LHC.
more »
« less
$$Z'$$s and sterile neutrinos from heterotic string models: exploring $$Z'$$ mass exclusion limits
Abstract We investigate the impact of sterile neutrinos on the decay rate of extra$$Z'$$ s with mass in the TeV range in heterotic string derived models. We explore the impact of sterile neutrinos on the current$$Z'$$ mass exclusion limits at the LHC, and how these bounds change when the parameter space of this specific class of models is modified.
more »
« less
- Award ID(s):
- 2112025
- PAR ID:
- 10371400
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 82
- Issue:
- 7
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ nucleus$$^{24}$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$\gamma ,\gamma ^{\prime }$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ , four$$J^{\pi }=1^+$$ , and six$$J^{\pi }=2^+$$ states in$$^{24}$$ Mg. De-excitation$$\gamma $$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ is observed, but this$$N=Z$$ nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ e$$^2 \, $$ fm$$^2$$ . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$1^+$$ level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ level.more » « less
-
It has recently been understood that the complete global symmetry of finite group topological gauge theories contains the structure of a higher-group. Here we study the higher-group structure in (3+1)D\mathbb{Z}_2 gauge theory with an emergent fermion, and point out that pumping chiralp+ip topological states gives rise to a\mathbb{Z}_{8} 0-form symmetry with mixed gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries to form a 3-group structure, which we examine in detail. We then show that in the context of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the code on a discretization ofT^3 (3-torus) andT^2 \rtimes_{C_2} S^1 (2-torus bundle over the circle) respectively, and pumpingp+ip states. Our considerations also imply the possibility of a logicalT gate by placing the code on\mathbb{RP}^3 and pumping ap+ip topological state.more » « less
-
Abstract A measurement of the dijet production cross section is reported based on proton–proton collision data collected in 2016 at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3$$\,\text {fb}^{-1}$$ . Jets are reconstructed with the anti-$$k_{\textrm{T}} $$ algorithm for distance parameters of$$R=0.4$$ and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity$$|y |_{\text {max}} $$ of the two jets with the highest transverse momenta$$p_{\textrm{T}}$$ and their invariant mass$$m_{1,2} $$ , and triple-differentially (3D) as a function of the rapidity separation$$y^{*} $$ , the total boost$$y_{\text {b}} $$ , and either$$m_{1,2} $$ or the average$$p_{\textrm{T}}$$ of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the$${\text {Z}} $$ boson is investigated, yielding a value of$$\alpha _\textrm{S} (m_{{\text {Z}}}) =0.1179\pm 0.0019$$ .more » « less
-
Abstract The nature of dark matter remains unresolved in fundamental physics. Weakly Interacting Massive Particles (WIMPs), which could explain the nature of dark matter, can be captured by celestial bodies like the Sun or Earth, leading to enhanced self-annihilation into Standard Model particles including neutrinos detectable by neutrino telescopes such as the IceCube Neutrino Observatory. This article presents a search for muon neutrinos from the center of the Earth performed with 10 years of IceCube data using a track-like event selection. We considered a number of WIMP annihilation channels ($$\chi \chi \rightarrow \tau ^+\tau ^-$$ /$$W^+W^-$$ /$$b\bar{b}$$ ) and masses ranging from 10 GeV to 10 TeV. No significant excess over background due to a dark matter signal was found while the most significant result corresponds to the annihilation channel$$\chi \chi \rightarrow b\bar{b}$$ for the mass$$m_{\chi }=250$$ GeV with a post-trial significance of$$1.06\sigma $$ . Our results are competitive with previous such searches and direct detection experiments. Our upper limits on the spin-independent WIMP scattering are world-leading among neutrino telescopes for WIMP masses$$m_{\chi }>100$$ GeV.more » « less
An official website of the United States government
