skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher-group symmetry of (3+1)D fermionic $\mathbb{Z}_2$ gauge theory: Logical CCZ, CS, and T gates from higher symmetry
It has recently been understood that the complete global symmetry of finite group topological gauge theories contains the structure of a higher-group. Here we study the higher-group structure in (3+1)D\mathbb{Z}_2 2 gauge theory with an emergent fermion, and point out that pumping chiralp+ip p + i p topological states gives rise to a\mathbb{Z}_{8} 8 0-form symmetry with mixed gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries to form a 3-group structure, which we examine in detail. We then show that in the context of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the code on a discretization ofT^3 T 3 (3-torus) andT^2 \rtimes_{C_2} S^1 T 2 C 2 S 1 (2-torus bundle over the circle) respectively, and pumpingp+ip p + i p states. Our considerations also imply the possibility of a logicalT T gate by placing the code on\mathbb{RP}^3 3 and pumping ap+ip p + i p topological state.  more » « less
Award ID(s):
2120757
PAR ID:
10592832
Author(s) / Creator(s):
; ;
Publisher / Repository:
SciPost Physics
Date Published:
Journal Name:
SciPost Physics
Volume:
16
Issue:
5
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ C 2 ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ C ħ × -action. First, we find a two-parameter family$$X_{k,l}$$ X k , l of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] is obtained via direct limit$$l\longrightarrow \infty $$ l and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ ħ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ P 2 with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual. 
    more » « less
  2. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  3. A<sc>bstract</sc> The entanglement negativity$$ \mathcal{E} $$ E (A:B) is a useful measure of quantum entanglement in bipartite mixed states. In random tensor networks (RTNs), which are related to fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi negativity$$ {\mathcal{E}}^{(2k)} $$ E 2 k generically break theℤ2kreplica symmetry. This calls into question previous calculations of holographic negativity using 2D CFT techniques that assumedℤ2kreplica symmetry and proposed that the negativity was related to the entanglement wedge cross section. In this paper, we resolve this issue by showing that in general holographic states, the saddles computing$$ {\mathcal{E}}^{(2k)} $$ E 2 k indeed break theℤ2kreplica symmetry. Our argument involves an identity relating$$ {\mathcal{E}}^{(2k)} $$ E 2 k to thek-th Rényi entropy on subregionABin the doubled state$$ {\left.|{\rho}_{AB}\right\rangle}_{A{A}^{\ast }{BB}^{\ast }} $$ ρ AB A A BB , from which we see that theℤ2kreplica symmetry is broken down toℤk. Fork< 1, which includes the case of$$ \mathcal{E} $$ E (A:B) atk= 1/2, we use a modified cosmic brane proposal to derive a new holographic prescription for$$ {\mathcal{E}}^{(2k)} $$ E 2 k and show that it is given by a new saddle with multiple cosmic branes anchored to subregionsAandBin the original state. Using our prescription, we reproduce known results for the PSSY model and show that our saddle dominates over previously proposed CFT calculations neark= 1. Moreover, we argue that theℤ2ksymmetric configurations previously proposed are not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations with those arising from RTNs with non-maximally entangled links, demonstrating that the qualitative form of backreaction in such RTNs is different from that in gravity. 
    more » « less
  4. AbstractThe characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + to$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - to$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct$$\pi $$ π back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstractThe adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies 
    more » « less
  5. Abstract We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subsetEof $$G_0$$ G 0 , and two finite subsets$$F_1,F_2$$ F 1 , F 2 of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of$$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for$$G=\mathbb {Z}^d$$ G = Z d for sufficiently large d. If one allows the group$$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. 
    more » « less