skip to main content


Title: A Review of GNSS/GPS in Hydrogeodesy: Hydrologic Loading Applications and Their Implications for Water Resource Research
Abstract

Hydrogeodesy, a relatively new field within the earth sciences, is the analysis of the distribution and movement of terrestrial water at Earth's surface using measurements of Earth's shape, orientation, and gravitational field. In this paper, we review the current state of hydrogeodesy with a specific focus on Global Navigation Satellite System (GNSS)/Global Positioning System measurements of hydrologic loading. As water cycles through the hydrosphere, GNSS stations anchored to Earth's crust measure the associated movement of the land surface under the weight of changing hydrologic loads. Recent advances in GNSS‐based hydrogeodesy have led to exciting applications of hydrologic loading and subsequent terrestrial water storage (TWS) estimates. We describe how GNSS position time series respond to climatic drivers, can be used to estimate TWS across temporal scales, and can improve drought characterization. We aim to facilitate hydrologists' use of GNSS‐observed surface deformation as an emerging tool for investigating and quantifying water resources, propose methods to further strengthen collaborative research and exchange between geodesists and hydrologists, and offer ideas about pressing questions in hydrology that GNSS may help to answer.

 
more » « less
Award ID(s):
2021618 1633831 2021637 1900646
NSF-PAR ID:
10371420
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
7
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change (∆TWS) estimates for studying both annual ∆TWS as well as multi‐year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite‐based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate ∆TWS estimates with global coverage but have a low spatial resolution of ∼400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE ∆TWS to produce more accurate spatiotemporal maps of ∆TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to ∆TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long‐term and short‐term mass variations. This allows us to preserve trends, annual, interannual, and multi‐year changes in TWS that were previously challenging to capture by satellite‐based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of ∆TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE ∆TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone.

     
    more » « less
  2. Abstract

    We installed a purpose‐built network of co‐located Global Navigation Satellite System (GNSS) stations and meteorological instrumentation to investigate water storage in a high‐mountain watershed along the Idaho‐Montana border. Twelve GNSS stations are distributed across the Selway‐Lochsa watersheds at approximately 30–40 km spacing, filling a critical observational gap between localized point measurements and regional geodetic and satellite data sets. The unique coupling of geodetic and hydrologic observations in this network enables direct comparison between co‐located GNSS measurements of the elastic response of the solid Earth and local changes in measured water storage. This network is specifically designed to address questions of hydrologic storage and movement at the mountain watershed scale. Here, we describe technical details of the network and its deployment; introduce new hydrologic, meteorologic, and geodetic data sets recorded by the network; process and analyze the source data (e.g., time series of daily three‐dimensional GNSS site positions, removal of non‐hydrologic signals); and characterize basic empirical relationships between water storage, water movement, and GNSS‐inferred surface displacement. The network shows preliminary evidence for spatial differences in displacement resulting from a range of snow loads across elevations, but longer and more complete data records are needed to support these initial findings. We also provide examples of additional scientific applications of this network, including estimations of snow depth and snow water equivalent from GNSS multipath reflectometry. Finally, we consider the challenges, limitations, and opportunities of deploying GNSS and weather stations at high elevations with heavy snowpack and offer ideas for technical improvements.

     
    more » « less
  3. Abstract

    Precipitation and evapotranspiration, respectively, an input and an output for hydrologists and ocean scientists, but the opposite for meteorologists, quantify the intensity of vertical water exchange between land, ocean, and the atmosphere. The interesting paper by Dagan et al. (2019,https://doi.org/10.1029/2019GL084173) analyzed important constraints between such fluxes as a function of spatial scales. This commentary aims to provide a complementary, hydrologic point of view, emphasizing how their intermittency at different spatial and temporal scales is essentially related to the contrasting water storage capacities of the atmosphere and the Earth's surface. Alterations of such storage due to global warming and land cover change are a challenge for the geophysical community and beyond.

     
    more » « less
  4. Abstract. We investigate the interannual and interdecadalhydrological changes in the Amazon River basin and its sub-basins duringthe 1980–2015 period using GRACE satellite data and a physically based, 2 kmgrid continental-scale hydrological model (LEAF-Hydro-Flood) that includes aprognostic groundwater scheme and accounts for the effects of land use–landcover (LULC) change. The analyses focus on the dominant mechanisms thatmodulate terrestrial water storage (TWS) variations and droughts. We findthat (1) the model simulates the basin-averaged TWS variations remarkablywell; however, disagreements are observed in spatial patterns of temporaltrends, especially for the post-2008 period. (2) The 2010s is the driestperiod since 1980, characterized by a major shift in the decadal mean comparedto the 2000s caused by increased drought frequency. (3) Long-term trends in TWSsuggest that the Amazon overall is getting wetter (1.13 mm yr−1), but itssouthern and southeastern sub-basins are undergoing significant negative TWSchanges, caused primarily by intensified LULC changes. (4) Increasingdivergence between dry-season total water deficit and TWS release suggests astrengthening dry season, especially in the southern and southeasternsub-basins. (5) The sub-surface storage regulates the propagation ofmeteorological droughts into hydrological droughts by strongly modulatingTWS release with respect to its storage preceding the drought condition. Oursimulations provide crucial insight into the importance of sub-surface storagein alleviating surface water deficit across Amazon and open pathways forimproving prediction and mitigation of extreme droughts under changingclimate and increasing hydrologic alterations due to human activities (e.g.,LULC change). 
    more » « less
  5. Abstract

    Retreat or advance of an ice sheet perturbs the Earth's solid surface, rotational vector, and the gravitational field, which in turn feeds back onto the evolution of the ice sheet over a range of timescales. Throughout the last glacial cycle, ice sheets over the Northern Hemisphere have gone through multiple growth and retreat phases, but the dynamics during these phases are not well understood. In this study, we apply a coupled ice sheet‐glacial isostatic adjustment model to simulate the Northern Hemisphere Ice Sheets over the last glacial cycle. We focus on understanding the influence of solid Earth deformation and gravitational field perturbations associated with surface (ice and water) loading changes on the dynamics of terrestrial and marine‐based ice sheets during different phases of the glacial cycle. Our results show that solid Earth deformation enhances glaciation during growth phases and melting during retreat phases in terrestrial regions through ice‐elevation feedback, and gravitational field perturbations have a stabilizing influence on marine‐based ice sheets in regions such as Hudson Bay in North America and Barents and Kara Seas in Eurasia during retreat phases through sea‐level feedback. Our results also indicate that solid Earth deformation influences the relative sensitivity of the North American and Eurasian ice sheets to climate and thus the timing and magnitude of their fluctuations throughout the last glacial cycle.

     
    more » « less