Abstract Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change (∆TWS) estimates for studying both annual ∆TWS as well as multi‐year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite‐based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate ∆TWS estimates with global coverage but have a low spatial resolution of ∼400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE ∆TWS to produce more accurate spatiotemporal maps of ∆TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to ∆TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long‐term and short‐term mass variations. This allows us to preserve trends, annual, interannual, and multi‐year changes in TWS that were previously challenging to capture by satellite‐based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of ∆TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE ∆TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone.
more »
« less
A Review of GNSS/GPS in Hydrogeodesy: Hydrologic Loading Applications and Their Implications for Water Resource Research
Abstract Hydrogeodesy, a relatively new field within the earth sciences, is the analysis of the distribution and movement of terrestrial water at Earth's surface using measurements of Earth's shape, orientation, and gravitational field. In this paper, we review the current state of hydrogeodesy with a specific focus on Global Navigation Satellite System (GNSS)/Global Positioning System measurements of hydrologic loading. As water cycles through the hydrosphere, GNSS stations anchored to Earth's crust measure the associated movement of the land surface under the weight of changing hydrologic loads. Recent advances in GNSS‐based hydrogeodesy have led to exciting applications of hydrologic loading and subsequent terrestrial water storage (TWS) estimates. We describe how GNSS position time series respond to climatic drivers, can be used to estimate TWS across temporal scales, and can improve drought characterization. We aim to facilitate hydrologists' use of GNSS‐observed surface deformation as an emerging tool for investigating and quantifying water resources, propose methods to further strengthen collaborative research and exchange between geodesists and hydrologists, and offer ideas about pressing questions in hydrology that GNSS may help to answer.
more »
« less
- PAR ID:
- 10371420
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 58
- Issue:
- 7
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Geodetic methods can monitor changes in terrestrial water storage (TWS) across large regions in near real‐time. Here, we investigate the effect of assumed Earth structure on TWS estimates derived from Global Navigation Satellite System (GNSS) displacement time series. Through a series of synthetic tests, we systematically explore how the spatial wavelength of water load affects the error of TWS estimates. Large loads (e.g., >1,000 km) are well recovered regardless of the assumed Earth model. For small loads (e.g., <10 km), however, errors can exceed 75% when an incorrect model for the Earth is chosen. As a case study, we consider the sensitivity of seasonal TWS estimates within mountainous watersheds of the western U.S., finding estimates that differ by over 13% for a collection of common global and regional structural models. Errors in the recovered water load generally scale with the total weight of the load; thus, long‐term changes in storage can produce significant uplift (subsidence), enhancing errors. We demonstrate that regions experiencing systematic and large‐scale variations in water storage, such as the Greenland ice sheet, exhibit significant differences in predicted displacement (over 20 mm) depending on the choice of Earth model. Since the discrepancies exceed GNSS observational precision, an appropriate Earth model must be adopted when inverting GNSS observations for mass changes in these regions. Furthermore, regions with large‐scale mass changes that can be quantified using independent data (e.g., altimetry, gravity) present opportunities to use geodetic observations to refine structural properties of seismologically derived models for the Earth's interior structure.more » « less
-
Abstract We installed a purpose‐built network of co‐located Global Navigation Satellite System (GNSS) stations and meteorological instrumentation to investigate water storage in a high‐mountain watershed along the Idaho‐Montana border. Twelve GNSS stations are distributed across the Selway‐Lochsa watersheds at approximately 30–40 km spacing, filling a critical observational gap between localized point measurements and regional geodetic and satellite data sets. The unique coupling of geodetic and hydrologic observations in this network enables direct comparison between co‐located GNSS measurements of the elastic response of the solid Earth and local changes in measured water storage. This network is specifically designed to address questions of hydrologic storage and movement at the mountain watershed scale. Here, we describe technical details of the network and its deployment; introduce new hydrologic, meteorologic, and geodetic data sets recorded by the network; process and analyze the source data (e.g., time series of daily three‐dimensional GNSS site positions, removal of non‐hydrologic signals); and characterize basic empirical relationships between water storage, water movement, and GNSS‐inferred surface displacement. The network shows preliminary evidence for spatial differences in displacement resulting from a range of snow loads across elevations, but longer and more complete data records are needed to support these initial findings. We also provide examples of additional scientific applications of this network, including estimations of snow depth and snow water equivalent from GNSS multipath reflectometry. Finally, we consider the challenges, limitations, and opportunities of deploying GNSS and weather stations at high elevations with heavy snowpack and offer ideas for technical improvements.more » « less
-
Abstract Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and terrestrial water storage (TWS) in China are critical for sustainable management of water resources but remain very limited. Here we report annual maps of surface water bodies in China during 1989–2016 at 30m spatial resolution. We find that SWA decreases in water-poor northern China but increases in water-rich southern China during 1989–2016. Our results also reveal the spatial-temporal divergence and consistency between TWS and SWA during 2002–2016. In North China, extensive and continued losses of TWS, together with small to moderate changes of SWA, indicate long-term water stress in the region. Approximately 569 million people live in those areas with deceasing SWA or TWS trends in 2015. Our data set and the findings from this study could be used to support the government and the public to address increasing challenges of water resources and security in China.more » « less
-
Abstract Significant imbalances in terrestrial water storage (TWS) and severe drought have been observed around the world as a consequence of climate changes. Improving our ability to monitor TWS and drought is critical for water‐resource management and water‐deficit estimation. We use continuous seismic ambient noise to monitor temporal evolution of near‐surface seismic velocity,dv/v, in central Oklahoma from 2013 to 2022. The deriveddv/vis found to be negatively correlated with gravitational measurements and groundwater depths, showing the impact of groundwater storage on seismic velocities. The hydrological effects involving droughts and recharge of groundwater occur on a multi‐year time scale and dominate the overall derived velocity changes. The thermoelastic response to atmospheric temperature variations occurs primarily on a yearly timescale and dominates the superposed seasonal velocity changes in this study. The occurrences of droughts appear simultaneously with local peaks ofdv/v, demonstrating the sensitivity of near‐surface seismic velocities to droughts.more » « less
An official website of the United States government
