skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biomimetic Total Synthesis and Investigation of the Non‐Enzymatic Chemistry of Oxazinin A
Abstract We report the first total synthesis of an antimycobacterial natural product oxazinin A that takes advantage of a multi‐component cascade reaction of anthranilic acid and a precursor polyketide containing an aldehyde. The route utilized for the synthesis of the pseudodimeric oxazinin A validates a previously proposed biosynthetic mechanism, invoking a non‐enzymatic pathway to the complex molecule. We found a 76 : 10 : 9 : 5 ratio of oxazinin diastereomers from the synthetic cascade, which is an identical match to that found in the fermentation media from the fungusEurotiomycetes110162. Further investigation of the non‐enzymatic formation of oxazinin A using1H‐15N HMBC NMR spectroscopy allowed for a plausible determination of the stepwise mechanism. The developed route is highly amenable for the synthesis of diverse sets of analogs around the oxazinin scaffold to study structure–activity relationships (SAR).  more » « less
Award ID(s):
2018501
PAR ID:
10371461
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
38
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new class of DNA‐based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding‐upon‐repair DNA nanoswitches are synthetic DNA sequences containingO6‐methyl‐guanine (O6‐MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of theO6‐MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding‐upon‐repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors. 
    more » « less
  2. Abstract Nonstandard amino acids (nsAAs) that arel‐phenylalanine derivatives with aryl ring functionalization have long been harnessed in natural product synthesis, therapeutic peptide synthesis, and diverse applications of genetic code expansion. Yet, to date, these chiral molecules have often been the products of poorly enantioselective and environmentally harsh organic synthesis routes. Here, we reveal the broad specificity of multiple natural pyridoxal 5′‐phosphate (PLP)‐dependent enzymes, specifically anl‐threonine transaldolase, a phenylserine dehydratase, and an aminotransferase, toward substrates that contain aryl side chains with diverse substitutions. We exploit this tolerance to construct a one‐pot biocatalytic cascade that achieves high‐yield synthesis of 18 diversel‐phenylalanine derivatives from aldehydes under mild aqueous reaction conditions. We demonstrate the addition of a carboxylic acid reductase module to this cascade to enable the biosynthesis ofl‐phenylalanine derivatives from carboxylic acids that may be less expensive or less reactive than the corresponding aldehydes. Finally, we investigate the scalability of the cascade by developing a lysate‐based route for preparative‐scale synthesis of 4‐formyl‐l‐phenylalanine, a nsAA with a bio‐orthogonal handle that is not readily market‐accessible. Overall, this work offers an efficient, versatile, and scalable route with the potential to lower manufacturing costs and democratize synthesis for many valuable nsAAs. 
    more » « less
  3. Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image 
    more » « less
  4. Abstract Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation1–6. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state7. By contrast, the mechanism we propose here is fully nonlinear. It is triggered by the non-dissipative arrest of turbulent cascades: energy piles up at an intermediate scale, which is neither the system size nor the smallest scales at which energy is usually dissipated. Using a combination of theory and large-scale simulations, we show that the tunable wavelength of these cascade-induced patterns can be set by a non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids ranging from bioactive to quantum systems8–12. Odd viscosity, which acts as a scale-dependent Coriolis-like force, leads to a two-dimensionalization of the flow at small scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large scales4. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can arise in natural systems, including atmospheric flows13–19, stellar plasma such as the solar wind20–22, or the pulverization and coagulation of objects or droplets in which mass rather than energy cascades23–25
    more » « less
  5. Abstract Carbon-negative synthesis of biochemical products has the potential to mitigate global CO2emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways intoEscherichia coligenerates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL−1), as well as hexanoic acid (3.06 ± 0.03 gL−1) and 1-hexanol (1.0 ± 0.1 gL−1) at the best performance reported to date in this bacterium. We also generateClostridium autoethanogenumstrains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL−1in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology. 
    more » « less