We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fastrotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signaltonoise ratio integral field spectroscopy (IFS) from the Gemini MultiObject Spectrograph with widefield data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (
 Publication Date:
 NSFPAR ID:
 10371467
 Journal Name:
 Physics in Medicine & Biology
 Volume:
 67
 Issue:
 18
 Page Range or eLocationID:
 Article No. 185006
 ISSN:
 00319155
 Publisher:
 IOP Publishing
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract M _{BH}), stellar masstolight ratio, dark matter content, and intrinsic shape. We find and a triaxial intrinsic shape with axis ratios ${M}_{\mathrm{BH}}=\left(1.7\pm 0.4\right)\times {10}^{9}\phantom{\rule{0.33em}{0ex}}{M}_{\odot}$p =b /a = 0.902 ± 0.009 and , triaxiality parameter $q=c/a={0.721}_{0.010}^{+0.011}$T = 0.39 ± 0.04. In comparison, the bestfit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 prefer and ${M}_{\mathrm{BH}}=\left(2.4\pm 0.6\right)\times {10}^{9}\phantom{\rule{0.33em}{0ex}}{M}_{\odot}$ , respectively. Neither model can account for the nonaxisymmetric stellar velocity features present inmore » ${M}_{\mathrm{BH}}=\left(2.9\pm 0.3\right)\times {10}^{9}\phantom{\rule{0.33em}{0ex}}{M}_{\odot}$ 
Abstract We present a detection of 21 cm emission from largescale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emissionline galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1
σ (LRG), 5.7σ (ELG), and 11.1σ (QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi ), defined as , where Ω_{Hi}is the cosmic abundance of H ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\equiv {10}^{3}\phantom{\rule{0.25em}{0ex}}{\mathrm{\Omega}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\left({b}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}+\u3008\phantom{\rule{0.25em}{0ex}}f{\mu}^{2}\u3009\right)$i ,b _{Hi}is the linear bias of Hi , and 〈f μ ^{2}〉 = 0.552 encodes the effect of redshiftspace distortions at linear order. We find for LRGs ( ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}={1.51}_{0.97}^{+3.60}$z =more » 
Abstract The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the following
a priori unstable Hamiltonian system with a timeperiodic perturbation where ${\mathcal{H}}_{\epsilon}(p,q,I,\phi ,t)=h(I)+\sum _{i=1}^{n}\pm \left(\frac{1}{2}{p}_{i}^{2}+{V}_{i}({q}_{i})\right)+\epsilon {H}_{1}(p,q,I,\phi ,t),$ , $(p,q)\in {\mathbb{R}}^{n}\times {\mathbb{T}}^{n}$ with $(I,\phi )\in {\mathbb{R}}^{d}\times {\mathbb{T}}^{d}$n ,d ⩾ 1,V _{i}are Morse potentials, andɛ is a small nonzero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH _{1}. Indeed, the set of admissibleH _{1}isC ^{ω}dense andC ^{3}open (a fortiori ,C ^{ω}open). Our perturbative technique for the genericity is valid in theC ^{k}topology for allk ∈ [3, ∞) ∪ {∞,ω }. 
Abstract We perform particleincell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electronpositron pairs. Various external magnetizations
σ ≲ 10^{−4}and pairloading factorsZ _{±}≲ 10 are studied, whereZ _{±}is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσ exceeds a critical valueσ _{L}that decreases withZ _{±}. Atσ ≲σ _{L}the shock is mediated by particle scattering in the selfgenerated microturbulent fields, the strength and scale of which decrease withZ _{±}, leading to lowerσ _{L}. (2) The energy fraction carried by the postshock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per postshock electron scales as . (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low as ${\overline{E}}_{\mathrm{e}}\propto {\left({Z}_{\pm}+1\right)}^{1}$σ ≈ 5 × 10^{−6}. The ions then become essentially thermal with mean energy , while electrons form a nonthermal tail, extending from ${\overline{E}}_{\mathrm{i}}$ to $E\sim {\left({Z}_{\pm}+1\right)}^{1}{\overline{E}}_{\mathrm{i}}$ . When ${\overline{E}}_{\mathrm{i}}$σ = 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here,more » 
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volumeaveraged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\lesssim {10}^{3}$ ). In particular, the neutral fraction evolution of the IGM at the critical redshift range of ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\sim 1$z = 6–7 is poorly constrained. We present new constraints on at ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}$z ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive modelindependent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first modelindependent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1 ${\overline{x}}_{more\xbb}$σ ), (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.5)<0.87\pm 0.03$σ ), and (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.7)<{0.94}_{0.09}^{+0.06}$σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.