skip to main content

Title: Inverse Design of Mechanical Metamaterials with Target Nonlinear Response via a Neural Accelerated Evolution Strategy

Materials with target nonlinear mechanical response can support the design of innovative soft robots, wearable devices, footwear, and energy‐absorbing systems, yet it is challenging to realize them. Here, mechanical metamaterials based on hinged quadrilaterals are used as a platform to realize target nonlinear mechanical responses. It is first shown that by changing the shape of the quadrilaterals, the amount of internal rotations induced by the applied compression can be tuned, and a wide range of mechanical responses is achieved. Next, a neural network is introduced that provides a computationally inexpensive relationship between the parameters describing the geometry and the corresponding stress–strain response. Finally, it is shown that by combining the neural network with an evolution strategy, one can efficiently identify geometries resulting in a wide range of target nonlinear mechanical responses and design optimized energy‐absorbing systems, soft robots, and morphing structures.

more » « less
Award ID(s):
1922321 2118201
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The properties of materials and structures typically remain fixed after being designed and manufactured. There is a growing interest in systems with the capability of altering their behaviors without changing geometries or material constitutions, because such reprogrammable behaviors could unlock multiple functionalities within a single design. We introduce an optimization-driven approach, based on multi-objective magneto-mechanical topology optimization, to design magneto-active metamaterials and structures whose properties can be seamlessly reprogrammed by switching on and off the external stimuli fields. This optimized material system exhibits one response under pure mechanical loading, and switches to a distinct response under joint mechanical and magnetic stimuli. We discover and experimentally demonstrate magneto-mechanical metamaterials and metastructures that realize a wide range of reprogrammable responses, including multi-functional actuation responses, adaptable snap-buckling behaviors, switchable deformation modes, and tunable bistability. The proposed approach paves the way for promising applications such as magnetic actuators, soft robots, and energy harvesters. 
    more » « less
  2. Programming structures to realize any prescribed mechanical response under large deformation is highly desired for various functionalities, such as actuation and energy trapping. Yet, the use of a single material phase and heuristically developed structural patterns leads to restricted design space and potential failure to achieve specific target behaviors. Here, through a free-form inverse design approach, multiple hyperelastic materials with distinct properties are optimally synthesized into composite structures to precisely achieve arbitrary and extreme prescribed responses under large deformations. The digitally synthesized structures exhibit organic shapes and motions with irregular distributions of material phases. Within the structures, different materials play distinct roles yet seamlessly collaborate through sophisticated deformation mechanisms to produce the target behaviors, some of which are unachievable by a single material. While complex in geometry and material heterogeneity, the discovered structures are effectively manufactured via multimaterial fabrication with different polydimethylsiloxane (PDMS) elastomers with distinct behaviors and their highly nonlinear responses are physically and accurately realized in experiments. To enhance programmability, the synthesized structures are heteroassembled into architectures that exhibit highly complex yet navigable responses. The proposed synthesis, multimaterial fabrication, and heteroassembly strategy can be utilized to design function-oriented and situation-specific mechanical devices for a wide range of applications. 
    more » « less
  3. Abstract

    Two distinct features of anthropogenic climate change, warming in the tropical upper troposphere and warming at the Arctic surface, have competing effects on the midlatitude jet stream’s latitudinal position, often referred to as a “tug-of-war.” Studies that investigate the jet’s response to these thermal forcings show that it is sensitive to model type, season, initial atmospheric conditions, and the shape and magnitude of the forcing. Much of this past work focuses on studying a simulation’s response to external manipulation. In contrast, we explore the potential to train a convolutional neural network (CNN) on internal variability alone and then use it to examine possible nonlinear responses of the jet to tropospheric thermal forcing that more closely resemble anthropogenic climate change. Our approach leverages the idea behind the fluctuation–dissipation theorem, which relates the internal variability of a system to its forced response but so far has been only used to quantify linear responses. We train a CNN on data from a long control run of the CESM dry dynamical core and show that it is able to skillfully predict the nonlinear response of the jet to sustained external forcing. The trained CNN provides a quick method for exploring the jet stream sensitivity to a wide range of tropospheric temperature tendencies and, considering that this method can likely be applied to any model with a long control run, could be useful for early-stage experiment design.

    more » « less
  4. Liquid crystals (LCs) are fluids within which molecules exhibit long-range orientational order, leading to anisotropic properties such as optical birefringence and curvature elasticity. Because the ordering of molecules within LCs can be altered by weak external stimuli, LCs have been widely used to create soft matter systems that respond optically to electric fields (LC display), temperature (LC thermometer) or molecular adsorbates (LC chemical sensor). More recent studies, however, have moved beyond investigations of optical responses of LCs to explore the design of complex LC-based soft matter systems that offer the potential to realize more sophisticated functions ( e.g. , autonomous, self-regulating chemical responses to mechanical stimuli) by directing the interactions of small molecules, synthetic colloids and living cells dispersed within the bulk of LCs or at their interfaces. These studies are also increasingly focusing on LC systems driven beyond equilibrium states. This review presents one perspective on these advances, with an emphasis on the discovery of fundamental phenomena that may enable new technologies. Three areas of progress are highlighted; (i) directed assembly of amphiphilic molecules either within topological defects of LCs or at aqueous interfaces of LCs, (ii) templated polymerization in LCs via chemical vapor deposition, an approach that overcomes fundamental challenges related to control of LC phase behavior during polymerization, and (iii) studies of colloids in LCs, including chiral colloids, soft colloids that are strained by LCs, and active colloids that are driven into organized states by dissipation of energy ( e.g. bacteria). These examples, and key unresolved issues discussed at the end of this perspective, serve to convey the message that soft matter systems that integrate ideas from LC, surfactant, polymer and colloid sciences define fertile territory for fundamental studies and creation of future transformative technologies. 
    more » « less
  5. A temperature variation can electrically polarize a pyroelectric material. In its converse manifestation, the electrocaloric effect entails a change in temperature due to the application of an electric field. These phenomena have wide applications ranging from infrared detection sensors and solid-state refrigeration to energy harvesting. However, the pyroelectric–electrocaloric effect is typically observed in certain classes of hard, brittle crystalline materials that must satisfy a stringent set of lattice symmetry conditions. Some limited experiments have however demonstrated that embedding immobile charges and dipoles in soft foams (thus creating an electret state) may lead to a pyroelectric-like response as well as large deformations desired from soft matter. In this work, we develop a systematic theory for coupled electrical, thermal and mechanical responses of soft electrets. Using simple illustrative examples, we derive closed-form explicit expressions for the pyroelectric and electrocaloric coefficients of electrets. While pyroelectricity in electrets has been noted before, our derived expressions provide a clear quantitative basis to interpret (and eventually design) this effect as well as insights into how the geometrically nonlinear deformation and Maxwell stress give rise to its emergence. We present conditions to obtain a larger pyroelectric and electrocaloric response. In particular, the electrocaloric effect is predicted for the first time in such materials and we show that a proper design and a reasonable choice of materials can lead to a temperature reduction of as much as 1.5 K under the application of electrical fields of 10 MV cm −1 . 
    more » « less