We present a novel optimization framework for optimal design of structures exhibiting memory characteristics by incorporating shape memory polymers (SMPs). SMPs are a class of memory materials capable of undergoing and recovering applied deformations. A finite-element analysis incorporating the additive decomposition of small strain is implemented to analyze and predict temperature-dependent memory characteristics of SMPs. The finite element method consists of a viscoelastic material modelling combined with a temperature-dependent strain storage mechanism, giving SMPs their characteristic property. The thermo-mechanical characteristics of SMPs are exploited to actuate structural deflection to enable morphing toward a target shape. A time-dependent adjoint sensitivity formulation implemented through a recursive algorithm is used to calculate the gradients required for the topology optimization algorithm. Multimaterial topology optimization combined with the thermo-mechanical programming cycle is used to optimally distribute the active and passive SMP materials within the design domain. This allows us to tailor the response of the structures to design them with specific target displacements, by exploiting the difference in the glass-transition temperatures of the two SMP materials. Forward analysis and sensitivity calculations are combined in a PETSc-based optimization framework to enable efficient multi-functional, multimaterial structural design with controlled deformations.
Digital synthesis of free-form multimaterial structures for realization of arbitrary programmed mechanical responses
Programming structures to realize any prescribed mechanical response under large deformation is highly desired for various functionalities, such as actuation and energy trapping. Yet, the use of a single material phase and heuristically developed structural patterns leads to restricted design space and potential failure to achieve specific target behaviors. Here, through a free-form inverse design approach, multiple hyperelastic materials with distinct properties are optimally synthesized into composite structures to precisely achieve arbitrary and extreme prescribed responses under large deformations. The digitally synthesized structures exhibit organic shapes and motions with irregular distributions of material phases. Within the structures, different materials play distinct roles yet seamlessly collaborate through sophisticated deformation mechanisms to produce the target behaviors, some of which are unachievable by a single material. While complex in geometry and material heterogeneity, the discovered structures are effectively manufactured via multimaterial fabrication with different polydimethylsiloxane (PDMS) elastomers with distinct behaviors and their highly nonlinear responses are physically and accurately realized in experiments. To enhance programmability, the synthesized structures are heteroassembled into architectures that exhibit highly complex yet navigable responses. The proposed synthesis, multimaterial fabrication, and heteroassembly strategy can be utilized to design function-oriented and situation-specific mechanical devices for a wide range of applications.
- Award ID(s):
- 2047692
- Publication Date:
- NSF-PAR ID:
- 10333780
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 10
- ISSN:
- 0027-8424
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications, ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdisciplinary research calls for an easy to use and efficient modeling/simulation platform that can be leveraged by researchers with different backgrounds. Here we present a lattice model for hard-magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and volumetric change, so-called ‘magttice’. Magnetic actuation is realized through prescribed nodal forces in magttice. We further implement the model into the framework of a large-scale atomic/molecular massively parallel simulator (LAMMPS) for highly efficient parallel simulations. The magttice is first validated by examining the deformation of ferromagnetic beam structures, and then applied to various smart structures, such as origami plates and magnetic robots. After investigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic robot in water, like jellyfish's locomotion, is further studied by coupling the magttice and lattice Boltzmann method (LBM). These examples indicate that the proposed magttice model can enable more efficient mechanical modeling and simulation for the rational design of magnetically driven smart structures.
-
All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixingmore »
-
Abstract Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achievedmore »
-
We report on studies of new gas sensing devices to be used in high humidity environments. Highly thermal-stable, super hydrophobic 2-dimensional (2D) boron nitride nanosheets (BNNSs) functionalized with Pt nanoparticles were prepared and used as an active layer for the prototype. The morphologic surface, crystallographic structures and chemical compositions of the synthesized 2D materials were characterized by using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM) and Raman scattering, respectively. The experimental data reveals that high-quality BNNSs were prepared. A pair of Au electrodes were combined with a basic electrical circuit and the 2D sensing material to form high-performance gas sensors for the detection of pollution gases. The present structure is simple and the fabrication is easy and fast, which ensures the creation of a low-cost prototype with harsh (high humidity, high temperature) environment resistance and potential for miniaturization. The responses of the prototype to different target gases with different concentrations were characterized. The influences of the operating temperature and bias voltage effect on sensing performances were also investigated. The fabricated sensors appear to have high selectivity, high sensitivity and fast response to target gases. The sensing mechanism in the present case ismore »