skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stem succulence controls flower and fruit production but not stem growth in the desert shrub ocotillo ( Fouquieria splendens )
Premise of the StudyThe C3desert shrub ocotillo (Fouquieria splendens) completely lacks xeromorphic leaves but is uncommonly both stem succulent and repetitively drought deciduous (documented to have produced many foliation–defoliation cycles during a growing season). Both adaptations conserve water in this xerophyte, but are the roles of succulence and deciduousness merely redundant? The observation that year‐to‐year reproductive effort was relatively consistent while vegetative growth was not offered a critical clue that, coupled with long‐term precipitation data, helped answer this question. MethodsAt two sites in the Chihuahuan Desert in southern New Mexico, United States, 22 ocotillos were studied annually for more than two decades to explore the relationships among reproductive effort, vegetative stem growth, and patterns of precipitation. Key ResultsVegetative stem growth occurred in mid‐ to late summer (July–September), the season of maximum precipitation in the Chihuahuan Desert, and was significantly related to summer precipitation received in the year of growth. Reproductive effort occurred in early to late spring (April–June), which with winter account for minimum precipitation during the year, but was significantly related to summer precipitation received in the previous year, suggesting the importance of stem succulence and stored water. ConclusionsWhile highly variable summer precipitation was responsible for enormous fluctuations in annual ocotillo stem growth, stem succulence insulated reproductive effort from such immense variability. Stem‐stored water allowed the production of flowers and fruits to proceed relatively consistently during the driest years and during the driest time of year in the Chihuahuan Desert.  more » « less
Award ID(s):
1832194
PAR ID:
10371620
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
106
Issue:
2
ISSN:
0002-9122
Format(s):
Medium: X Size: p. 223-230
Size(s):
p. 223-230
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) periods (dry, wet, average) that occurred naturally within a 26-y time frame to examine responses of plant species richness to extreme rainfall in grasslands and shrublands of the Chihuahuan Desert. Our hypothesis was that richness would be related to rainfall amount, and similar in periods with similar amounts of rainfall. Breakpoint analyses of water-year precipitation showed five sequential periods (1993–2018): AVG1 (mean = 22 cm/y), DRY1 (mean = 18 cm/y), WET (mean = 30 cm/y), DRY2 (mean = 18 cm/y), and AVG2 (mean = 24 cm/y). Detailed analyses revealed changes in daily and seasonal metrics of precipitation over the course of the study: the amount of nongrowing season precipitation decreased since 1993, and summer growing season precipitation increased through time with a corresponding increase in frequency of extreme rainfall events. This increase in summer rainfall could explain the general loss in C3 species after the wet period at most locations through time. Total species richness in the wet period was among the highest in the five periods, with the deepest average storm depth in the summer and the fewest long duration (>45 day) dry intervals across all seasons. For other species-ecosystem combinations, two richness patterns were observed. Compared to AVG2, AVG1 had lower water-year precipitation yet more C3 species in upland grasslands, creosotebush, and mesquite shrublands, and more C4 perennial grasses in tarbush shrublands. AVG1 also had larger amounts of rainfall and more large storms in fall and spring with higher mean depths of storm and lower mean dry-day interval compared with AVG2. While DRY1 and DRY2 had the same amount of precipitation, DRY2 had more C4 species than DRY1 in creosote bush shrublands, and DRY1 had more C3 species than DRY2 in upland grasslands. Most differences in rainfall between these periods occurred in the summer. Legacy effects were observed for C3 species in upland grasslands where no significant change in richness occurred from DRY1 to WET compared with a 41% loss of species from the WET to DRY2 period. The opposite asymmetry pattern was found for C4 subdominant species in creosote bush and mesquite shrublands, where an increase in richness occurred from DRY1 to WET followed by no change in richness from WET to DRY2. Our results show that understanding plant biodiversity of Chihuahuan Desert landscapes as precipitation continues to change will require daily and seasonal metrics of rainfall within a wet-dry period paradigm, as well as a consideration of species traits (photosynthetic pathways, lifespan, morphologies). Understanding these relationships can provide insights into predicting species-level dynamics in drylands under a changing climate. 
    more » « less
  2. Abstract Drylands are often characterized by a pulse dynamics framework in which episodic rain events trigger brief pulses of biological activity and resource availability that regulate primary production. In the northern Chihuahuan Desert, growing season precipitation typically comes from monsoon rainstorms that stimulate soil microbial processes like decomposition, releasing inorganic nitrogen needed by plant processes. Compared to microbes, plants require greater amounts of soil moisture, typically from larger monsoon storms predicted to become less frequent and more intense in the future. Yet field‐based studies linking rainfall pulses with soil nutrient dynamics are rare. Consequently, little is known about how changes in rainfall patterns may affect plant available nitrogen in dryland soils, particularly across temporal scales. We measured daily and seasonal responses of soil inorganic nitrogen and related parameters to experimentally applied small frequent and large infrequent rain events throughout a summer growing season in a Chihuahuan Desert grassland. Contrary to long‐standing theories around resource pulse dynamics in drylands, nitrogen availability did not pulse following experimental rain events. Moreover, large infrequent events resulted in significantly less plant available nitrogen despite causing distinct pulses of increased soil moisture availability that persisted for several days. Overall, nitrogen availability increased over the growing season, especially following small frequent rain events that also stimulated some microbial ecoenzymatic activities. Our results suggest that projected changes in climate to fewer, larger rain events could significantly impact primary production in desert grasslands by decreasing plant available nitrogen when soil moisture is least limiting to plant growth. 
    more » « less
  3. Abstract The glacial meltwater streams in the McMurdo Dry Valleys (MDVs), Antarctica only flow during the austral summer and contain abundant algal mats which grow at the onset of flow. Their relative abundance in stream channels of this polar desert make the streams biogeochemical hot spots. The MDVs receive minimal precipitation as snow, which is redistributed by wind and deposited in distinct locations, some of which become persistent snow patches each year. Previous studies identified that MDV streamflow comes from a combination of glacier ice and snow, although snow was assumed to contribute little to the overall water budget. This study uses a combination of satellite imagery, terrain analysis, and field measurements to determine where snow patches accumulate and persist across MDV watersheds, and to quantify the potential hydrologic and biogeochemical contributions of snow patches to streams. Watersheds near the coast have the highest snow‐covered area and longest snow persistence. Many of these snow patches accumulate within the stream channels, which results in the potential to contribute to streamflow. During the summer of 2021–2022, stream channel snow patches had the potential to contribute anywhere between <1% and 90% of the total annual discharge in Lake Fryxell Basin streams, and may increase with different hydrometeorological conditions. On average the potential inputs from snow patches to streamflow was between 12% and 25% of the annual discharge during the 2021–2022 season, as determined by snow area and SWE. Snow patches in the majority of the watersheds had higher nitrogen and phosphorous concentrations than stream water, and six streams contained snow with higher N:P ratios than the average N:P in the stream water. This suggests that if such patches melt early in the summer, these nutrient and water inputs could occur at the right time and stoichiometry to be crucial for early season algal mat growth. 
    more » « less
  4. Abstract QuestionsReordering of dominant species is an important mechanism of community response to global environmental change. We asked how wildfire (apulseevent) interacts with directional changes in climate (environmentalpresses) to affect plant community dynamics in a Chihuahuan Desert grassland. LocationSevilleta National Wildlife Refuge, Socorro County, New Mexico, USA. MethodsVegetation cover by species was measured twice each year from 1989 to 2019 along two permanently located 400‐m long line intercept transects, one in Chihuahuan Desert grassland, and the second in the ecotone between Chihuahuan Desert and Great Plains grasslands. Trends in community structure were plotted over time, and climate sensitivity functions were used to predict how changes in the Pacific Decadal Oscillation (PDO) affected vegetation dynamics. ResultsCommunity composition was undergoing gradual change in the absence of disturbance in the ecotone and desert grassland. These changes were related to the reordering of abundances between two foundation grasses,Bouteloua eriopodaandB. gracilis, that together account for >80% of above‐ground primary production. However, reordering varied over time in response to wildfire (apulse) and changes in the PDO (apress). Community dynamics were initially related to the warm and cool phases of the PDO, but in the ecotone these relationships changed following wildfire, which reset the system. ConclusionSpecies reordering is an important component of community dynamics in response to ecological presses. However, reordering is a complex, non‐linear process in response to ecological presses that may change over time and interact with pulse disturbances. 
    more » « less
  5. This dataset contains cover and biomass data collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly. 
    more » « less