Abstract MorphDeCage (2‐(4‐methoxy‐3‐nitrophenyl)‐2‐morpholinoacetic acid) and PyrDeCage (2‐(4‐methoxy‐3‐nitrophenyl)‐2‐(methyl(pyridin‐2‐ylmethyl)amino)acetic) are Zn2+photocages that utilize photodecarboxylation of the methoxy derivative ofmeta‐nitrophenylacetic acid as the release mechanism. Isothermal titration calorimetry (ITC) was used an alternative to usual approaches to measure the Zn2+binding affinities of these new compounds owing to unsuccessful measurement by competitive titration with 4‐(2‐pyridylazo)resorcinol (PAR). MorphDeCage forms a 1 : 1 ligand‐metal complex with a 106 μM Kdvalue. PyrDeCage forms both a 1 : 1 and 1 : 2 metal: ligand complexes with 3.2 and 21.7 μM Kdvalues respectively. To further demonstrate the efficacy of the ITC methodology and provide a comparison to direct UV‐vis titrations data, two photocages based on Sanger's reagent (SRPs) were prepared. The Kdvalues of the SRPs measured by UV‐vis titration and ITC were internally consistent and support the retraction of the original report (J. Am. Chem. Soc.2020,142, 3806–3813), which was withdrawn due to errors in binding affinity measurements.
more »
« less
Improved Photodecarboxylation Properties in Zinc Photocages Constructed Using m‐ Nitrophenylacetic Acid Variants**
Abstract The methoxy‐ and fluoro‐derivatives ofmeta‐nitrophenylacetic acid (mNPA) chromophores undergo photodecarboxylation with comparable quantum yields (Φ) to unsubstitutedmNPA, but uncage at red‐shifted excitation wavelengths. This observation prompted us to investigate DPAdeCageOMe (2‐[bis(pyridin‐2‐ylmethyl)amino]‐2‐(4‐methoxy‐3‐nitrophenyl)acetic acid) and DPAdeCageF (2‐[bis(pyridin‐2‐ylmethyl)amino]‐2‐(4‐fluoro‐3‐nitrophenyl)acetic acid) as Zn2+photocages. DPAdeCageOMe has a high Φ and exhibits other photophysical properties comparable to XDPAdeCage ({bis[(2‐pyridyl)methyl]amino}(9‐oxo‐2‐xanthenyl) acetic acid), the best preforming Zn2+photocage reported to date. Since the synthesis of DPAdeCageOMe is more straightforward than XDPACage, the new photocage will be a highly competitive tool for biological applications.
more »
« less
- PAR ID:
- 10371628
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhotoChem
- Volume:
- 6
- Issue:
- 9
- ISSN:
- 2367-0932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Herein we report the electrochemical generation of a mononuclear MnIII(OO) (peroxo) complex supported on a dpaq ligand (dpaq=2‐(bis(pyridin‐2‐ylmethyl)amino)‐N‐(quinolin‐8‐yl)acetamide) for the first time, and its reactivity inN,N‐dimethylformamide. The formation of the MnIII(dpaq)(OO) complex is probed by low temperature electronic absorption spectro‐electrochemistry experiments. An analysis of the reduction of the MnIII(dpaq)(OO) complex is carried out combining cyclic voltammetry and simulations. The involvement of a MnII(dpaq)(OOH) complex is proposed based on CV data and is corroborated by DFT computations.more » « less
-
In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer.more » « less
-
Reactions of the bicompartmental bis(phenolato) compound 6,6′-methylenebis(2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-chlorophenol)hemihydrate (H 2 L ½H 2 O) with 3d metal( ii ) ions afforded novel fully structurally characterized bridged acetato dinuclear complexes [Mn 2 (HL)(μ 1,2 -OAc) 2 ]PF 6 (1) [Zn 2 (HL)(μ 1,2 -OAc)(H 2 O) 0.75 (MeOH) 0.25 ](PF 6 ) 2 ·0.45(H 2 O) (5) and [Cd 2 (HL)(μ 1,1,2 -OAc)(OAc)(H 2 O)]PF 6 ·H 2 O (6) as well as the polymeric bridged-azido tetranuclear catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4). The complex [Cu 4 (HL) 2 (ClO 4 ) 3 (H 2 O) 5 ](ClO 4 ) 3 ·5H 2 O (2) was partially characterized. In addition, three more dinuclear complexes [Cu 2 (H 2 L)(NO 3 ) 2 (H 2 O) 2 ](NO 3 ) 2 (3), [Cu 2 (HL)(OAc)(CH 3 OH)](PF 6 ) 2 (7) and [Cu 2 (HL)(NCS) 2 ]NO 3 ·2H 2 O (8) were also isolated. All complexes were characterized by CHN elemental analysis, IR and UV-Vis spectroscopy, ESI-MS, conductivity measurements and X-ray single crystal crystallography for compounds 1, 4, 5 and 6, where the bis(phenolato) ligand displayed different deprotonation (H 2 L, HL − and L 2− ). The magnetic susceptibility measurements over the temperature range 2–300 K revealed very weak antiferromagnetic coupling in dimanganese( ii ) 1 ( J = −1.64(1) cm −1 ) and almost negligible magnetic interaction in dicopper( ii ) 2 ( J = 0(3) cm −1 ). In the azido catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4) complex, the J value of −133(3) cm −1 was obtained upon moderate-to-strong antiferromagnetic coupling through the di-μ 1,3 -N 3 -bridged dicopper( ii ) unit with no magnetic interaction between the two copper( ii ) ions in the di-μ 1,1 -N 3 -bridged unit.more » « less
-
Bis(triphenylsulfonium) tetrachloridozinc(II), (C18H15S)2[ZnCl4] (I), bis(triphenylsulfonium) tetrachloridocadmium(II), (C18H15S)2[CdCl4] (II), and bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space groupP21/n. In all three structures, there are two crystallographically independent triphenylsulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2–anions (M= Zn2+, Cd2+, Hg2+) are tetrahedral; their M—Cl bond lengths systematically increase from Zn2+to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H...H and H...C contacts dominate the TPS cation environments, whereas H...Cl and S...Minteractions anchor each [MCl4]2–anion to two surrounding TPS cations. Weak C—H...Cl hydrogen bonds, as well as inversion-centered π–π stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2assemblies in (III).more » « less
An official website of the United States government
