For a set P of n points in the unit ball b ⊆ R d , consider the problem of finding a small subset T ⊆ P such that its convex-hull ε-approximates the convex-hull of the original set. Specifically, the Hausdorff distance between the convex hull of T and the convex hull of P should be at most ε. We present an efficient algorithm to compute such an ε ′ -approximation of size kalg, where ε ′ is a function of ε, and kalg is a function of the minimum size kopt of such an ε-approximation. Surprisingly, there is no dependence on the dimension d in either of the bounds. Furthermore, every point of P can be ε- approximated by a convex-combination of points of T that is O(1/ε2 )-sparse. Our result can be viewed as a method for sparse, convex autoencoding: approximately representing the data in a compact way using sparse combinations of a small subset T of the original data. The new algorithm can be kernelized, and it preserves sparsity in the original input.
more »
« less
DeepHull: Fast Convex Hull Approximation in High Dimensions
Computing or approximating the convex hull of a dataset plays a role in a wide range of applications, including economics, statistics, and physics, to name just a few. However, convex hull computation and approximation is exponentially complex, in terms of both memory and computation, as the ambient space dimension increases. In this paper, we propose DeepHull, a new convex hull approximation algorithm based on convex deep networks (DNs) with continuous piecewise-affine nonlinearities and nonnegative weights. The idea is that binary classification between true data samples and adversarially generated samples with such a DN naturally induces a polytope decision boundary that approximates the true data convex hull. A range of exploratory experiments demonstrates that DeepHull efficiently produces a meaningful convex hull approximation, even in a high-dimensional ambient space.
more »
« less
- PAR ID:
- 10371730
- Date Published:
- Journal Name:
- ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of dynamically maintaining the convex hull of a set S of points in the plane under the following special sequence of insertions and deletions (called window-sliding updates): insert a point to the right of all points of S and delete the leftmost point of S. We propose an O(|S|)-space data structure that can handle each update in O(1) amortized time, such that all standard binary-search-based queries on the convex hull of S can be answered in 𝑂(log |S|) time, and the convex hull itself can be output in time linear in its size.more » « less
-
In this article, we consider the problem of reachable set computation of a closed-loop system with anytime sensor and a neural network controller. We provide a star set data structure-based forward propagation algorithm that uses existing efficient operations on star-sets and a novel convex hull construction. We present rigorous analysis of the space-complexity of the star sets generated during the propagation. Our experimental results show significant improvement with respect to existing methods that use vertex-based representation of polyhedral sets for propagation through closed-loop systems with anytime sensing, as well as the feasibility of the approach on different types of dynamics, control and sensors.more » « less
-
Abstract. End-member mixing analysis (EMMA) is a method of interpreting stream water chemistry variations and is widely used for chemical hydrograph separation. It is based on the assumption that stream water is a conservative mixture of varying contributions from well-characterized source solutions (end-members). These end-members are typically identified by collecting samples of potential end-member source waters from within the watershed and comparing these to the observations. Here we introduce a complementary data-driven method (convex hull end-member mixing analysis – CHEMMA) to infer the end-member compositions and their associated uncertainties from the stream water observations alone. The method involves two steps. The first uses convex hull nonnegative matrix factorization (CH-NMF) to infer possible end-member compositions by searching for a simplex that optimally encloses the stream water observations. The second step uses constrained K-means clustering (COP-KMEANS) to classify the results from repeated applications of CH-NMF and analyzes the uncertainty associated with the algorithm. In an example application utilizing the 1986 to 1988 Panola Mountain Research Watershed dataset, CHEMMA is able to robustly reproduce the three field-measured end-members found in previous research using only the stream water chemical observations. CHEMMA also suggests that a fourth and a fifth end-member can be (less robustly) identified. We examine uncertainties in end-member identification arising from non-uniqueness, which is related to the data structure, of the CH-NMF solutions, and from the number of samples using both real and synthetic data. The results suggest that the mixing space can be identified robustly when the dataset includes samples that contain extremely small contributions of one end-member, i.e., samples containing extremely large contributions from one end-member are not necessary but do reduce uncertainty about the end-member composition.more » « less
-
It is well-known that the McCormick relaxation for the bilinear constraint z = xy gives the convex hull over the box domains for x and y. In network applications where the domain of bilinear variables is described by a network polytope, the McCormick relaxation, also referred to as linearization, fails to provide the convex hull and often leads to poor dual bounds. We study the convex hull of the set containing bilinear constraints [Formula: see text] where xirepresents the arc-flow variable in a network polytope, and yjis in a simplex. For the case where the simplex contains a single y variable, we introduce a systematic procedure to obtain the convex hull of the above set in the original space of variables, and show that all facet-defining inequalities of the convex hull can be obtained explicitly through identifying a special tree structure in the underlying network. For the generalization where the simplex contains multiple y variables, we design a constructive procedure to obtain an important class of facet-defining inequalities for the convex hull of the underlying bilinear set that is characterized by a special forest structure in the underlying network. Computational experiments conducted on different applications show the effectiveness of the proposed methods in improving the dual bounds obtained from alternative techniques. Funding: This work was supported by Air Force Office of Scientific Research [Grant FA9550-23-1-0183]; National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grant 2338641]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001 .more » « less
An official website of the United States government

