- Award ID(s):
- 1525971
- PAR ID:
- 10057818
- Date Published:
- Journal Name:
- Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2016)
- Page Range / eLocation ID:
- 548 to 557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Bojanczyk, Mikolaj ; Chekuri, Chandra (Ed.)Given a point set P in the plane, we seek a subset Q ⊆ P, whose convex hull gives a smaller and thus simpler representation of the convex hull of P. Specifically, let cost(Q,P) denote the Hausdorff distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest subset Q ⊆ P such that cost(Q,P) ≤ ε. We also consider the dual version, where given an integer k, we seek the subset Q ⊆ P which minimizes cost(Q,P), such that |Q| ≤ k. For these problems, when P is in convex position, we respectively give an O(n log²n) time algorithm and an O(n log³n) time algorithm, where the latter running time holds with high probability. When there is no restriction on P, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an O(n^2.5302) time algorithm when minimizing k and an O(min{n^2.5302, kn^2.376}) time algorithm when minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case.more » « less
-
Caratheodory’s theorem says that any point in the convex hull of a set $P$ in $R^d$ is in the convex hull of a subset $P'$ of $P$ such that $|P'| \le d + 1$. For some sets P, the upper bound d + 1 can be improved. The best upper bound for P is known as the Caratheodory number [2, 15, 17]. In this paper, we study a computational problem of finding the smallest set $P'$ for a given set $P$ and a point $p$. We call the size of this set $P'$, the Caratheodory number of a point p or CNP. We show that the problem of deciding the Caratheodory number of a point is NP-hard. Furthermore, we show that the problem is k-LDT-hard. We present two algorithms for computing a smallest set $P'$, if CNP= 2,3. Bárány [1] generalized Caratheodory’s theorem by using d+1 sets (colored sets) such that their convex hulls intersect. We introduce a Colorful Caratheodory number of a point or CCNP which can be smaller than d+1. Then we extend our results for CNP to CCNP.more » « less
-
Abstract We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the epigraph of the quadratic can be obtained from inequalities for the underlying supermodular set function by lifting them into nonlinear inequalities in the original space of variables. Explicit forms of the convex-hull description are given, both in the original space of variables and in an extended formulation via conic quadratic-representable inequalities, along with a polynomial separation algorithm. Computational experiments indicate that the lifted supermodular inequalities in conic quadratic form are quite effective in reducing the integrality gap for quadratic optimization with indicators.
-
We consider the problem of dynamically maintaining the convex hull of a set S of points in the plane under the following special sequence of insertions and deletions (called window-sliding updates): insert a point to the right of all points of S and delete the leftmost point of S. We propose an O(|S|)-space data structure that can handle each update in O(1) amortized time, such that all standard binary-search-based queries on the convex hull of S can be answered in 𝑂(log |S|) time, and the convex hull itself can be output in time linear in its size.more » « less
-
Bojańczyk, Mikołaj ; Merelli, Emanuela ; Woodruff, David P (Ed.)Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2).more » « less