The study of the origin of heavy elements is one of the main goals of nuclear astrophysics. In this paper, we present new observational data for the heavy r-process elements gadolinium (Gd, Z= 64), dysprosium (Dy, Z= 66), and thorium (Th, Z= 90) in a sample of 276 Galactic disc stars (–1.0 < [Fe/H] < + 0.3). The stellar spectra have a high resolution of 42 000 and 75 000, and the signal-to-noise ratio higher than 100. The LTE abundances of Gd, Dy, and Th have been determined by comparing the observed and synthetic spectra for three Gd lines (149 stars), four Dy lines (152 stars), and the Th line at 4019.13 Å (170 stars). For about 70 per cent of the stars in our sample, Gd and Dy are measured for the first time, and Th for 95 per cent of the stars. Typical errors vary from 0.07 to 0.16 dex. This paper provides the first extended set of Th observations in the Milky Way disc. Together with europium (Eu, Z= 63) data from our previous studies, we have compared these new observations with nucleosynthesis predictions and Galactic Chemical Evolution simulations. We confirm that [Gd/Fe] and [Dy/Fe] show the same behaviour of Eu. We study with GCE simulations the evolution of [Th/Fe] in comparison with [Eu/Fe], showing that unlike Eu, either the Th production is metallicity dependent in case of a unique source of the r-process in the Galaxy, or the frequency of the Th-rich r-process source is decreasing with the increase in [Fe/H].
more » « less- Award ID(s):
- 1927130
- PAR ID:
- 10371941
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 516
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 3786-3801
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We present chemical abundances for 21 elements (from Li to Eu) in 150 metal-poor Galactic stars spanning −4.1 < [Fe/H] < −2.1. The targets were selected from the SkyMapper survey and include 90 objects with [Fe/H] ≤ −3 of which some 15 have [Fe/H] ≤ −3.5. When combining the sample with our previous studies, we find that the metallicity distribution function has a power-law slope of Δ(log N)/Δ[Fe/H] = 1.51 ± 0.01 dex per dex over the range −4 ≤ [Fe/H] ≤ −3. With only seven carbon-enhanced metal-poor stars in the sample, we again find that the selection of metal-poor stars based on SkyMapper filters is biased against highly carbon-rich stars for [Fe/H] > −3.5. Of the 20 objects for which we could measure nitrogen, 11 are nitrogen-enhanced metal-poor (NEMP) stars. Within our sample, the high NEMP fraction (55 per cent ± 21 per cent) is compatible with the upper range of predicted values (between 12 per cent and 35 per cent). The chemical abundance ratios [X/Fe] versus [Fe/H] exhibit similar trends to previous studies of metal-poor stars and Galactic chemical evolution models. We report the discovery of nine new r-I stars, four new r-II stars, one of which is the most metal-poor known, nine low-α stars with [α/Fe] ≤ 0.15 as well as one unusual star with [Zn/Fe] = +1.4 and [Sr/Fe] = +1.2 but with normal [Ba/Fe]. Finally, we combine our sample with literature data to provide the most extensive view of the early chemical enrichment of the Milky Way Galaxy.more » « less
-
ABSTRACT We present a chemo-dynamical analysis for 27 near main-sequence turnoff metal-poor stars, including 20 stars analysed for the first time. The sample spans a range in [Fe/H] from −2.5 to −3.6, with 44 per cent having [Fe/H]<−2.9. We derived chemical abundances for 17 elements, including strontium and barium. We derive Li abundances for the sample, which are in good agreement with the ‘Spite Plateau’ value. The lighter elements (Z < 30) generally agree well with those of other low-metallicity halo stars. This broadly indicates chemically homogeneous gas at the earliest times. We used the [Sr/Ba] versus [Ba/Fe] diagram to classify metal-poor stars into five populations based on their observed ratios. We find HE 0232 − 3755 to be a likely main r-process star, and HE 2214 − 6127 and HE 2332 − 3039 to be limited-r stars. CS30302-145, HE 2045 − 5057, and CD −24°17504 plausibly originated in long-disrupted early dwarf galaxies. We also find that the derived [Sr/H] and [Ba/H] values for CD −24°17504 are not inconsistent with the predicted yields of the s-process in massive rotating low-metallicity stars models. Further theoretical explorations will be helpful to better understand the earliest mechanisms and time scales of heavy element production for comparison with these and other observational abundance data. Finally, we investigate the orbital histories of our stars. Most display halo-like kinematics although three stars (CS 29504-018, HE 0223 − 2814, and HE 2133 − 0421) appear to be disc-like in nature. This confirms the extragalactic origin for CS 30302-145, HE 2045 − 5057, and, in particular, CD −24°17504 which likely originated from a small accreted stellar system as one of the oldest stars.
-
ABSTRACT Very metal-poor stars ($\rm [Fe/H] \lt -2$) in the Milky Way are fossil records of early chemical evolution and the assembly and structure of the Galaxy. However, they are rare and hard to find. Gaia DR3 has provided over 200 million low-resolution (R ≈ 50) XP spectra, which provides an opportunity to greatly increase the number of candidate metal-poor stars. In this work, we utilize the XGBoost classification algorithm to identify ∼200 000 very metal-poor star candidates. Compared to past work, we increase the candidate metal-poor sample by about an order of magnitude, with comparable or better purity than past studies. First, we develop three classifiers for bright stars (BP < 16). They are Classifier-T (for Turn-off stars), Classifier-GC (for Giant stars with high completeness), and Classifier-GP (for Giant stars with high purity) with expected purity of 52 per cent/45 per cent/76 per cent and completeness of 32 per cent/93 per cent/66 per cent, respectively. These three classifiers obtained a total of 11 000/111 000/44 000 bright metal-poor candidates. We apply model-T and model-GP on faint stars (BP > 16) and obtain 38 000/41 000 additional metal-poor candidates with purity 29 per cent/52 per cent, respectively. We make our metal-poor star catalogues publicly available, for further exploration of the metal-poor Milky Way.
-
Abstract M15 is a globular cluster with a known spread in neutron-capture elements. This paper presents abundances of neutron-capture elements for 62 stars in M15. Spectra were obtained with the Michigan/Magellan Fiber System spectrograph, covering a wavelength range from ∼4430 to 4630 Å. Spectral lines from Fe
i , Feii , Sri , Zrii , Baii , Laii , Ceii , Ndii , Smii , Euii , and Dyii were measured, enabling classifications and neutron-capture abundance patterns for the stars. Of the 62 targets, 44 are found to be highly Eu-enhancedr -II stars, another 17 are moderately Eu-enhancedr -I stars, and one star is found to have ans -process signature. The neutron-capture patterns indicate that the majority of the stars are consistent with enrichment by ther -process. The 62 target stars are found to show significant star-to-star spreads in Sr, Zr, Ba, La, Ce, Nd, Sm, Eu, and Dy, but no significant spread in Fe. The neutron-capture abundances are further found to have slight correlations with sodium abundances from the literature, unlike what has been previously found; follow-up studies are needed to verify this result. The findings in this paper suggest that the Eu-enhanced stars in M15 were enhanced by the same process, that the nucleosynthetic source of this Eu pollution was ther -process, and that ther -process source occurred as the first generation of cluster stars was forming. -
ABSTRACT Recent observational studies have uncovered a small number of very metal-poor (VMP) stars with cold kinematics in the Galactic disc and bulge. However, their origins remain enigmatic. We select a total of 138 Milky Way (MW) analogues from the TNG50 cosmological simulation based on their z = 0 properties: discy morphology, stellar mass, and local environment. In order to make more predictive statements for the MW, we further limit the spatial volume coverage of stellar populations in galaxies to that targeted by the upcoming 4MOST high-resolution survey of the Galactic disc and bulge. We find that across all galaxies, ∼20 per cent of VMP ([Fe/H] < −2) stars belong to the disc, with some analogues reaching 30 per cent. About 50 ± 10 per cent of the VMP disc stars are, on average, older than 12.5 Gyr and ∼70 ± 10 per cent come from accreted satellites. A large fraction of the VMP stars belong to the halo (∼70) and have a median age of 12 Gyr. Our results with the TNG50 cosmological simulation confirm earlier findings with simulations of fewer individual galaxies, and suggest that the stellar disc of the MW is very likely to host significant amounts of very- and extremely-metal-poor stars that, although mostly of ex situ origin, can also form in situ, reinforcing the idea of the existence of a primordial Galactic disc.