skip to main content


Title: Piece‐By‐Piece Shape‐Morphing: Engineering Compatible Auxetic and Non‐Auxetic Lattices to Improve Soft Robot Performance in Confined Spaces
  more » « less
NSF-PAR ID:
10371951
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
9
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies.

     
    more » « less
  2. Abstract

    Recent advancements in manufacturing, finite element analysis (FEA), and optimization techniques have expanded the design possibilities for metamaterials, including isotropic and auxetic structures, known for applications like energy absorption due to their unique deformation mechanism and consistent behavior under varying loads. However, achieving simultaneous control of multiple properties, such as optimal isotropic and auxetic characteristics, remains challenging. This paper introduces a systematic design approach that combines modeling, FEA, genetic algorithm, and optimization to create tailored mechanical behavior in metamaterials. Through strategically arranging 8 distinct neither isotropic nor auxetic unit cell states, the stiffness tensor in a 5 × 5 × 5 cubic symmetric lattice structure is controlled. Employing the NSGA-II genetic algorithm and automated modeling, we yield metamaterial lattice structures possessing both desired isotropic and auxetic properties. Multiphoton lithography fabrication and experimental characterization of the optimized metamaterial highlights a practical real-world use and confirms the close correlation between theoretical and experimental data.

     
    more » « less
  3. Abstract Morphing structures, defined as body panels that are capable of a drastic autonomous shape transformation, have gained importance in the aerospace, automotive, and soft robotics industries since they address the need to switch between shapes for optimal performance over the range of operation. Laminated composites are attractive for morphing because multiple laminae, each serving a specific function, can be combined to address multiple functional requirements such as shape transformation, structural integrity, safety, aerodynamic performance, and minimal actuation energy. This paper presents a review of laminated composite designs for morphing structures. The trends in morphing composites research are outlined and the literature on laminated composites is categorized based on deformation modes and multifunctional approaches. Materials commonly used in morphing structures are classified based on their properties. Composite designs for various morphing modes such as stretching, flexure, and folding are summarized and their performance is compared. Based on the literature, the laminae in an n-layered composite are classified based on function into three types: constraining, adaptive, and prestressed. A general analytical modeling framework is presented for composites comprising the three types of functional laminae. Modeling developments for each morphing mode and for actuation using smart material-based active layers are discussed. Results, presented for each deformation mode, indicate that the analytical modeling can not only provide insight into the structure's mechanics but also serve as a guide for geometric design and material selection. 
    more » « less
  4. Abstract

    Kirigami, the ancient paper art of cutting, has recently emerged as a new approach to construct metamaterials with novel properties imparted by cuts. However, most studies are limited to thin sheets‐based 2D kirigami metamaterials with specific forms and limited reconfigurability due to planar connection constraints of cut units. Here, 3D modular kirigami is introduced by cutting bulk materials into spatially closed‐loop connected cut cubes to construct a new class of 3D kirigami metamaterials. The module is transformable with multiple degrees of freedom that can transform into versatile distinct daughter building blocks. Their conformable assembly creates a wealth of reconfigurable and disassemblable metamaterials with diverse structures and unique properties, including reconfigurable 1D column‐like materials, 2D lattice‐like metamaterials with phase transition of chirality, as well as 3D frustration‐free multilayered metamaterials with 3D auxetic behaviors and programmable deformation modes. This study largely expands the design space of kirigami metamaterials from 2D to 3D.

     
    more » « less
  5.  
    more » « less