skip to main content


Title: Review of Morphing Laminated Composites
Abstract Morphing structures, defined as body panels that are capable of a drastic autonomous shape transformation, have gained importance in the aerospace, automotive, and soft robotics industries since they address the need to switch between shapes for optimal performance over the range of operation. Laminated composites are attractive for morphing because multiple laminae, each serving a specific function, can be combined to address multiple functional requirements such as shape transformation, structural integrity, safety, aerodynamic performance, and minimal actuation energy. This paper presents a review of laminated composite designs for morphing structures. The trends in morphing composites research are outlined and the literature on laminated composites is categorized based on deformation modes and multifunctional approaches. Materials commonly used in morphing structures are classified based on their properties. Composite designs for various morphing modes such as stretching, flexure, and folding are summarized and their performance is compared. Based on the literature, the laminae in an n-layered composite are classified based on function into three types: constraining, adaptive, and prestressed. A general analytical modeling framework is presented for composites comprising the three types of functional laminae. Modeling developments for each morphing mode and for actuation using smart material-based active layers are discussed. Results, presented for each deformation mode, indicate that the analytical modeling can not only provide insight into the structure's mechanics but also serve as a guide for geometric design and material selection.  more » « less
Award ID(s):
1738723
NSF-PAR ID:
10159251
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Mechanics Reviews
Volume:
72
Issue:
1
ISSN:
0003-6900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free‐moving, entirely soft‐bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape‐morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real‐world applications for intricate and challenging tasks.

     
    more » « less
  2.  
    more » « less
  3. null (Ed.)
    Fiber-based flexible piezoelectric composites with interdigitated electrodes, namely Macro-Fiber Composite (MFC) structures, strike a balance between the deformation and actuation force capabilities for effective underwater bio-inspired locomotion. These materials are also suitable for vibration-based energy harvesting toward enabling self-powered electronic components. In this work, we design, fabricate, and experimentally characterize an MFC-based bio-inspired swimmer-energy harvester platform. Following in vacuo and in air frequency response experiments, the proposed piezoelectric robotic fish platform is tested and characterized under water for its swimming performance both in free locomotion (in a large water tank) and also in a closed-loop water channel under imposed flow. In addition to swimming speed characterization under resonant actuation, hydrodynamic thrust resultant in both quiescent water and under imposed flow are quantified experimentally. We show that the proposed design easily produces thrust levels on the order of biological fish with similar dimensions. Overall it produces thrust levels higher than other smart material-based designs (such as soft material-based concepts), while offering geometric scalability and silent operation unlike large scale robotic fish platforms that use conventional and bulky actuators. The performance of this untethered swimmer platform in piezoelectric energy harvesting is also quantified by underwater base excitation experiments in a quiescent water and via vortex induced-vibration (VIV) experiments under imposed flow in a water channel. Following basic resistor sweep experiments in underwater base excitation experiments, VIV tests are conducted for cylindrical bluff body configurations of different diameters and distances from the leading edge of the energy harvesting tail portion. The resulting concept and design can find use for underwater swimmer and sensor applications such as ecological monitoring, among others. 
    more » « less
  4. Abstract

    A new class of thin flexible structures is introduced that morph from flat into prescribed 3D shapes through strain mismatch between layers of a composite plate. To achieve control over the target shape, two different concepts are coupled. First, motivated by biological growth, strain mismatch is applied between the flat composite layers to transform it into a 3D shape. Depending on the amount of the applied strain mismatch, the transformation involves buckling into one of the available finite number of deformation modes. Second, inspired by kirigami, portions of the material are removed from one of the layers according to a specific pattern. This dramatically increases the number of possible 3D shapes and allows us to attain specific topologies. An experimental apparatus that allows precise control of the strain mismatch is devised. An inverse problem is posed, where starting from a given target shape, the physical parameters that make these shapes possible are determined. To show how the concept works, it focuses on circular composite plates and designs a kirigami pattern that yields a hemispherical structure. The analysis combines a theoretical approach with numerical simulations and physical experiments to understand and predict the shape transition from 2D to 3D. The tools developed here can be extended to attain arbitrary 3D shapes. The initially flat shape suggests that conventional additive manufacturing techniques can be used to functionalize the soft kirigami composite to fabricate, for example, deployable 3D structures, smart skins, and soft electromagnetic metasurfaces.

     
    more » « less
  5. Meyendorf, Norbert G. ; Farhangdoust, Saman (Ed.)
    Metal-matrix composites with active components have been investigated as a way to functionalize metals. As opposed to surface-mounted approaches, smart materials embedded in metals can be effectively shielded against the environment while providing in-situ sensing, health monitoring, actuation, or energy harvesting functions. Typical manufacturing approaches can be problematic, however, in that they may physically damage the smart material or degrade its electromechanical properties. For instance, non-resin-based embedment procedures such as powder metallurgy involve isostatic compression and diffusion bonding, leading to high process temperatures and breakdown of the electromechanical properties of the active component to be embedded. This paper presents the development and characterization of an aluminum-matrix composite embedded with piezoelectric polyvinylidene fluoride (PVDF) sensors using ultrasonic additive manufacturing (UAM). UAM incorporates the principles of solid-state, ultrasonic metal welding and subtractive processes to fabricate metal-matrices with seamlessly embedded smart materials and without thermal loading. As implemented in this study, the UAM process uses as-received, commercial Al 6061 tape foilstock and TE Connectivity PVDF film. In order to increase the mechanical coupling between the sensor and the metal-matrix without the aid of adhesives, the PVDF sensor is embedded with an empirically optimized pre-compression defined by the tape foils welded above the sensor. The specimen is characterized by tensile (d31 mode), bending (d31 mode), and compression tests (d33 mode) to evaluate its functional performance. Within the investigated load range, the specimen exhibits open-circuit sensitivities of 4.6 mV/N under uniaxial tension and 9.7 mV/N under compressive impulse tests with better than 95% linearity and frequency bandwidth of several kilohertz. The technology presented in this study could be applied for load and tactile sensing, impact detection and localization, thermal measurements, energy harvesting, and non-destructive testing applications. 
    more » « less