skip to main content

Title: Earth System Model Overestimation of Cropland Temperatures Scales With Agricultural Intensity
Abstract

Intensive crop growth can modify regional climate by partitioning energy to latent heating through transpiration, cooling growing season temperatures. Recent work shows that cooling associated with agriculture can dampen anthropogenic warming over breadbasket regions. However, it is unknown whether climate models reproduce crop influences on regional climate, and thus the future risk of extreme climate events over global breadbasket regions. We show that models overestimate growing season temperatures and underestimate evapotranspiration (ET) over global croplands, and that these differences increase with cropped area. We trace this warm and dry difference through each model's representation of the surface energy budget, showing that model differences in transpiration, leaf area index, and the ratio of transpiration to total ET drive the overall effect. While the implications of these model deficiencies for future projections are uncertain, they point to the importance of improving representations of crop‐climate processes to better assess breadbasket vulnerability to climate change.

Authors:
 ;  ;  
Award ID(s):
2049262
Publication Date:
NSF-PAR ID:
10372009
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
16
ISSN:
0094-8276
Publisher:
DOI PREFIX: 10.1029
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequencymore »trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

    « less
  2. Abstract

    Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climatemore »variability that could lead to negative yield anomalies. Through trend analysis of the predictors, the trend in crop yield is mainly driven by projected trends in temperature-related indices, and county-level trend analysis shows regional differences are negligible. This framework provides estimates of the impact of climate and irrigation on US crop yields for the 21st century that account for the full uncertainty of climate variables and the range of crop response. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

    « less
  3. Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surfacemore »temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation.« less
  4. Abstract

    Correctly calculating the timing and amount of crop irrigation is crucial for capturing irrigation effects on surface water and energy budgets and land‐atmosphere interactions. This study incorporated a dynamic irrigation scheme into the Noah with multiparameterization land surface model and investigated three methods of determining crop growing season length by agriculture management data. The irrigation scheme was assessed at field scales using observations from two contrasting (irrigated and rainfed) AmeriFlux sites near Mead, Nebraska. Results show that crop‐specific growing‐season length helped capture the first application timing and total irrigation amount, especially for soybeans. With a calibrated soil‐moisture triggering threshold (IRR_CRI), using planting and harvesting dates alone could reasonably predict the first application for maize. For soybeans, additional constraints on growing season were required to correct an early bias in the first modeled application. Realistic leaf area index input was essential for identifying the leaf area index‐based growing season. When transitioning from field to regional scales, the county‐level calibrated IRR_CRI helped mitigate overestimated (underestimated) total irrigation amount in southeastern Nebraska (lower Mississippi River Basin). In these two heavily irrigated regions, irrigation produced a cooling effect of 0.8–1.4 K, a moistening effect of 1.2–2.4 g/kg, a reduction in sensible heat fluxmore »by 60–105 W/m2, and an increase in latent heat flux by 75–120 W/m2. Most of irrigation water was used to increase soil moisture and evaporation, rather than runoff. Lacking regional‐scale irrigation timing and crop‐specific parameters makes transferring the evaluation and parameter‐constraint methods from field to regional scales difficult.

    « less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>