Correctly calculating the timing and amount of crop irrigation is crucial for capturing irrigation effects on surface water and energy budgets and land‐atmosphere interactions. This study incorporated a dynamic irrigation scheme into the Noah with multiparameterization land surface model and investigated three methods of determining crop growing season length by agriculture management data. The irrigation scheme was assessed at field scales using observations from two contrasting (irrigated and rainfed) AmeriFlux sites near Mead, Nebraska. Results show that crop‐specific growing‐season length helped capture the first application timing and total irrigation amount, especially for soybeans. With a calibrated soil‐moisture triggering threshold (IRR_CRI), using planting and harvesting dates alone could reasonably predict the first application for maize. For soybeans, additional constraints on growing season were required to correct an early bias in the first modeled application. Realistic leaf area index input was essential for identifying the leaf area index‐based growing season. When transitioning from field to regional scales, the county‐level calibrated IRR_CRI helped mitigate overestimated (underestimated) total irrigation amount in southeastern Nebraska (lower Mississippi River Basin). In these two heavily irrigated regions, irrigation produced a cooling effect of 0.8–1.4 K, a moistening effect of 1.2–2.4 g/kg, a reduction in sensible heat flux by 60–105 W/m2, and an increase in latent heat flux by 75–120 W/m2. Most of irrigation water was used to increase soil moisture and evaporation, rather than runoff. Lacking regional‐scale irrigation timing and crop‐specific parameters makes transferring the evaluation and parameter‐constraint methods from field to regional scales difficult.
more » « less- Award ID(s):
- 1739705
- PAR ID:
- 10453623
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 1942-2466
- Page Range / eLocation ID:
- p. 2428-2448
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Extensive expansion in irrigated agriculture has taken place over the last half century. Due to increased irrigation and resultant land-use–land-cover change, the central United States has seen a decrease in temperature and changes in precipitation during the second half of the twentieth century. To investigate the impacts of widespread commencement of irrigation at the beginning of the growing season and continued irrigation throughout the summer on local and regional weather, the Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 in southeastern Nebraska. GRAINEX consisted of two 15-day intensive observation periods. Observational platforms from multiple agencies and universities were deployed to investigate the role of irrigation in surface moisture content, heat fluxes, diurnal boundary layer evolution, and local precipitation. This article provides an overview of the data collected and an analysis of the role of irrigation in land–atmosphere interactions on time scales from the seasonal to the diurnal. The analysis shows that a clear irrigation signal was apparent during the peak growing season in mid-July. This paper shows the strong impact of irrigation on surface fluxes, near-surface temperature and humidity, and boundary layer growth and decay.more » « less
-
Abstract Modification of grasslands into irrigated and nonirrigated agriculture in the Great Plains resulted in significant impacts on weather and climate. However, there has been lack of observational data–based studies solely focused on impacts of irrigation on the PBL and convective conditions. The Great Plains Irrigation Experiment (GRAINEX), conducted during the 2018 growing season, collected data over irrigated and nonirrigated land uses over Nebraska to understand these impacts. Specifically, the objective was to determine whether the impacts of irrigation are sustained throughout the growing season. The data analyzed include latent and sensible heat flux, air temperature, dewpoint temperature, equivalent temperature (moist enthalpy), PBL height, lifting condensation level (LCL), level of free convection (LFC), and PBL mixing ratio. Results show increased partitioning of energy into latent heat relative to sensible heat over irrigated areas while average maximum air temperature was decreased and dewpoint temperature was increased from the early to peak growing season. Radiosonde data suggest reduced planetary boundary layer (PBL) heights at all launch sites from the early to peak growing season. However, reduction of PBL height was much greater over irrigated areas than over nonirrigated croplands. Relative to the early growing period, LCL and LFC heights were also lower during the peak growing period over irrigated areas. Results note, for the first time, that the impacts of irrigation on PBL evolution and convective environment can be sustained throughout the growing season and regardless of background atmospheric conditions. These are important findings and applicable to other irrigated areas in the world.
Significance Statement To meet the ever-increasing demand for food, many regions of the world have adopted widespread irrigation. The High Plains Aquifer (HPA) region, located within the Great Plains of the United States, is one of the most extensively irrigated regions. In this study, for the first time, we have conducted a detailed irrigation-focused land surface and atmospheric data collection campaign to determine irrigation impacts on the atmosphere. This research demonstrates that irrigation significantly alters lower atmospheric characteristics and creates favorable cloud and convection development conditions during the growing season. The results clearly show first-order impacts of irrigation on regional weather and climate and hence warrant further attention so that we can minimize negative impacts and achieve sustainable irrigation.
-
Abstract. Irrigation has important implications for sustaining global food production by enabling crop water demand to be met even under dry conditions.Added water also cools crop plants through transpiration; irrigation mightthus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we used satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Unlike air temperature metrics, satellite-derived LST revealed a significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling appeared to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. Our analysis also revealed that irrigation not only reduced water and temperature stress but also weakened the response of yield to these stresses. Specifically, temperature stress was significantly weakened for reproductive processes in irrigated maize. Attribution analysis further suggested that water and high temperature stress alleviation was responsible for 65±10 % and 35±5.3 % of the irrigation yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, considering the potentially strong interaction between water and heat stress, future research on irrigation benefits should explore the interaction effects between heat and drought alleviation.more » « less
-
Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables.more » « less
-
High-resolution mapping of irrigated fields is needed to better estimate water and nutrient fluxes in the landscape, food production, and local to regional climate. However, this remains a challenge in humid to subhumid regions, where irrigation has been expanding into what was largely rainfed agriculture due to trends in climate, crop prices, technologies and practices. One such region is southwestern Michigan, USA, where groundwater is the main source of irrigation water for row crops (primarily corn and soybeans). Remote sensing of irrigated areas can be difficult in these regions as rainfed areas have similar characteristics. We present methods to address this challenge and enhance the contrast between neighboring rainfed and irrigated areas, including weather-sensitive scene selection, applying recently developed composite indices and calculating spatial anomalies. We create annual, 30m-resolution maps of irrigated corn and soybeans for southwestern Michigan from 2001 to 2016 using a machine learning method (random forest). The irrigation maps reasonably capture the spatial and temporal pattern of irrigation, with accuracies that exceed available products. Analysis of the irrigation maps showed that the irrigated area in southwestern Michigan tripled in the last 16 years. We also discuss the remaining challenges for irrigation mapping in humid to subhumid areas.more » « less